期刊文献+

基于深度迁移学习的烟雾识别方法 被引量:24

Smoke recognition based on deep transfer learning
下载PDF
导出
摘要 针对传统的基于传感器和图像特征的烟雾识别方法易被外部环境干扰且识别场景单一,从而造成烟雾识别精度较低,而基于深度学习的识别方法对数据量要求较高,对于烟雾数据缺失或数据来源受限的情况模型识别能力较弱的问题,提出一种基于深度迁移学习的烟雾识别方法。将ImageNet数据集作为源数据,利用VGG-16模型进行基于同构数据下的特征迁移。首先,将所有的图像数据进行预处理,对每张图像作随机变换(随机旋转、剪切、翻转等);其次,引入VGG-16网络,将其卷积层特征进行迁移,并连接预先使用烟雾数据在VGG-16网络中训练过的全连接层;进而构建出基于迁移学习的深度网络,从而训练得到烟雾识别模型。利用公开数据集以及真实场景烟雾图像进行实验验证,实验结果表明,和现有主流烟雾图像识别方法相比,所提方法有较高的烟雾识别率,实验精度达96%以上。 For smoke recognition problem, the traditional recognition methods based on sensor and image feature are easily affected by the external environment, which would lead to low recognition precision if the flame scene and type change. The recognition method based on deep learning requires a large amount of data, so the model recognition ability is weak when the smoke data is missing or the data source is restricted. To overcome these drawbacks, a new smoke recognition method based on deep transfer learning was proposed. The main idea was to conduct smoke feature transfer by means of VGG-16 (Visual Geometry Group) model with setting ImageNet dataset as source data. Firstly, all image data were pre-processed, including random rotation, cut and overturn, etc. Secondly, VGG-16 network was introduced to transfer the features in the convolutional layers, and to connect the fully connected layers network pre-trained by smoke data. Finally, the smoke recognition model was achieved. Experiments were conducted on open datasets and real-world smoke images. The experimental results show that the accuracy of the proposed method is higher than those of current smoke image recognition methods, and the accuracy is more than 96%.
出处 《计算机应用》 CSCD 北大核心 2017年第11期3176-3181,3193,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1204609) 河南省高校科技创新人才支持计划(15HASTIT022) 河南省高校青年骨干教师资助计划(2014GGJS-046) 河南师范大学优秀青年科学基金资助项目(14YQ007) 河南省高等学校重点科研项目计划(15A520078) 河南省科技攻关项目(172102210333)~~
关键词 深度学习 迁移学习 烟雾识别 微量数据集 deep learning transfer learning smoke recognition small dataset
  • 相关文献

参考文献2

二级参考文献99

  • 1闵昊,薛乐川,叶仰林.IBM—PC机控制的CCD摄象系统[J].复旦学报(自然科学版),1994,33(2):232-234. 被引量:3
  • 2谢贵顺.微机实时监控技术在供电系统中的应用[J].电工技术,1997(7):21-22. 被引量:3
  • 3Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 4Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 6Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 7Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 8Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 9Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 10Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.

共引文献479

同被引文献182

引证文献24

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部