期刊文献+

基于微多普勒信息的弹道目标成像 被引量:2

Ballistic Target Imaging Based on Micro-Doppler Information
下载PDF
导出
摘要 弹道导弹识别是弹道防御系统中的核心问题之一,直接关系到导弹防御系统的成败。如果能对弹道目标成像,则能获得关于目标结构更为丰富的信息。由于弹道目标具有高速自旋的特点,因此基于转台模型的逆合成孔径雷达成像技术对高速自旋目标成像是失效的。针对该问题,详细分析了弹道目标回波模型,并研究了弹道目标时频图的调制规律,在此基础上,提出一种基于微多普勒信息的弹道目标成像方法,实现了对弹道目标二维强散射中心的重构,仿真数据处理结果证明了所提方法的有效性。 Ballistic missile recognition is a key problem in the ballistic missile defense system,which determines whether the anti-missile radar can recognize the warhead or not.If a ballistic target can be imaged,the richer information about the structure of the target can be obtained.Due to the high speed spinning characteristic of ballistic missile,the traditional ISAR imaging method based on the relative rotation of target and platform is not suitable for ballistic missile.Aiming at the problem,we first analyze the echo model of ballistic target,and then study the modulation effect of time-frequency distribution.Based on the above study,a new ballistic target imaging method based on micro-Doppler is proposed,and the 2 Dscattering distribution of ballistic target is reconstructed successfully.Simulation results show the validity and effectiveness of the proposed method.
作者 夏鹏 田西兰
出处 《雷达科学与技术》 北大核心 2017年第5期553-557,共5页 Radar Science and Technology
关键词 弹道目标成像 滑动散射中心模型 微多普勒 时频分析 ballistic target imaging sliding scattering center model micro-Doppler time-frequency analysis
  • 相关文献

参考文献6

二级参考文献65

  • 1孙永健,穆贺强,程臻,付莹.基于四元数矩阵奇异值的目标特征提取与识别[J].电波科学学报,2015,30(1):160-166. 被引量:4
  • 2李强,张守宏,张焕颖,曹运合.高掠海角下基于Radon变换的海杂波抑制方法[J].电子与信息学报,2007,29(5):1087-1091. 被引量:3
  • 3Richards M A.雷达信号处理基础[M].北京:电子工业出版社,2008:165-170.
  • 4Peng Lei, Sun Jin-ping, Wang Jun, et al. Micro-motion parameter estimation of free rigid targets based on radar micro-Doppler[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3776-3786.
  • 5Chen V C, Li Fa-yin, Ho Shen-shyang, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
  • 6Liu Yong-xiang, Li Xiang, and Zhuang Zhou-wen. Estimation of micro-motion parameters based on micro-Doppler[J]. IET Signal Processing, 2010, 4(3): 213-217.
  • 7Abramovich I, Spencer K, and Ben A. Band-inverse TVAR eovariance matrix estimation for adaptive detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 375-395.
  • 8Pally R K. Implementation of instantaneous frequency estimation based on time-varying AR modeling[D]. [Ph.D. dissertation], Faculty of the Virginia Polytechnic Institute and State University, 2009.
  • 9Beex A A and. Sham P. A time-varying Prony method for instantaneous frequency estimation at low SNR[C]. IEEE International Symposium on Circuits and Systems, Orlando, Florida, 1999, 3: 3-8.
  • 10Abramovich I, Spencer K, and Turley D E. Time-varying autoregressive models for multiple radar observations[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1298-1310.

共引文献50

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部