期刊文献+

基于图像质量约束的无序图像关键帧提取 被引量:3

Disordered Image Key Frame Extraction Based on Image Quality Constraint
下载PDF
导出
摘要 针对采集的无序图像存在图像信息冗余、模糊,不能满足特征检测、目标识别、三维重建等技术质量要求的问题,基于图像质量约束,提出一种无序图像关键帧提取方法。采用不预设K-均值的聚簇算法对无序图像进行自动聚簇。根据相似距离从每簇中提取出离聚簇中心最近的一帧作为关键帧。运用二次模糊处理算法对提取的关键帧进行无参考图像质量评价,其评价值若满足质量要求则保留,否则返回原来的簇中重新进行关键帧的提取与评价,直到提取的关键帧满足质量要求为止。实验结果表明,该方法能较好地滤除冗余图像,提取出满足质量要求的关键帧。 For the random images,there are problems of redundant and blur image information,which cannot meet the technical requirements in terms of feature detection,target recognition and 3 D reconstruction,based on image quality constraint,this paper proposes a disordered image key frame extraction method. The clustering algorithm without presetting K-means is used for automatic clustering of disordered images. According to the similar distance,the frame,being closest to the clustering center from each clustering,are extracted as the key one. The quadratic blur processing algorithm is adopted to evaluate the extracted key frames for non-reference image quality. If the evaluation values are in accordance with quality requirements,the frames will be reserved. Otherwise, returns to the original cluster,extracts and evaluates the key frame again until the extracted frames meet the quality requirements. Experimental results show that the proposed method can filter out redundant images and extract the key frames satisfying the quality requirements.
作者 郑恩 林靖宇
出处 《计算机工程》 CAS CSCD 北大核心 2017年第11期210-215,共6页 Computer Engineering
基金 国家自然科学基金(61561005 61271445) 广西科技攻关计划项目(桂科攻1598008-1)
关键词 无序图像 三维重建 关键帧提取 聚簇算法 二次模糊 disordered image 3D reconstruction key frame extraction clustering algorithm quadratic blur
  • 相关文献

参考文献9

二级参考文献146

  • 1袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 2王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 3王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 4佟雨兵,张其善,常青,祁云平.基于NN与SVM的图像质量评价模型[J].北京航空航天大学学报,2006,32(9):1031-1034. 被引量:30
  • 5杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 6Zhang Hong-jiang,Wang J Y A,Altunbasak Y.Content-based video retrieval and compression:A unifed solution[C]//IEEE International Conference on Image Processing,Washington,DC,USA, 1997:13-16.
  • 7Worf W.Key frame selection by motion analysis[C]//Proceedings of the 1996 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP ), Atlanta, 1996:1228-1231.
  • 8Zhuang Yue-ting,Rui Yong,Huang T S.Adaptive key frame extraction using unsupervised clustering[C]//Proceedings of IEEE International Conference on Image Processing(ICIP'98),Chicago, 1998: 866-870.
  • 9Oja E.A simplified neuron model as a principal component analyzer[J].Math Biology, 1982,15 : 267-273.
  • 10Draper B A,Kyungim B,Stewart B M,et al.Recognizing faces with PCA and ICA[J].Computer Vision and Image Understanding,2003, 91(1/2) : 115-137.

共引文献192

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部