期刊文献+

基于属性特征的评论文本情感极性量化分析 被引量:16

Analyzing Sentiment Polarity of Comments Based on Attributes
原文传递
导出
摘要 【目的】从评论对象的属性特征出发解决情感极性量化问题。【方法】将在线评论文本分解构建三层评论体系,即评论对象–对象属性–评论描述,从属性层级抽取属性词集和对应的评论集,考虑评论对象属性特征的不同影响,引入属性因子,并对TFIDF进行改进用以计算属性因子;结合评论模式和评论语境提出基于属性特征的评论情感量化分析算法并采用Python语言予以实现。【结果】相较于传统机器学习分类算法(NB、SVM)、属性因子设置为等权重时,本文算法在评论文本情感分类准确性方面有显著提高。【局限】评论集领域选择方面具有局限性,量化算法在系数设定方面存在主观性。【结论】本文算法能有效解决情感极性量化问题,进一步提高了情感分类准确性。 [Objective] This article tries to quantitatively study the sentiment polarity of online comments base on the targets' attributes. [Methods] First, we analyzed the comments by their objects, attributes and contents. Then, we extracted the attribute words and the corresponding comment sets. Third, we introduced the attribute factors and calculated their values with the modified TFIDF formula. Finally, we developed a quantitative analysis algorithm based on the attribute features with Python. [Results] Compared to the traditional machine learning classification algorithms(e.g., NB and SVM), our method improved the accuracy of sentiment classification, when the attribute factor was set to equal weight. [Limitations] The comments selection method and the coefficients parameters of the proposed algorithm need to be improved. [Conclusions] Our method could effectively improve the accuracy of the sentiment classification.
作者 李慧 柴亚青
出处 《数据分析与知识发现》 CSSCI CSCD 2017年第10期1-11,共11页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目"基于可信语义Wiki的知识库构建方法与研究应用"(项目编号:71203173) 中央高校基本科研业务费专项资金资助项目"大数据环境下基于主题模型的信息服务研究"(项目编号:JB160606) 国家自然科学青年基金项目"大规模动态社交网络社团检测算法研究"(项目编号:71401130)的研究成果之一
关键词 评论文本 属性因子 评论模式 情感极性 Comment Text Attribute Factor Comment Mode Sentiment Polarity
  • 相关文献

参考文献9

二级参考文献115

  • 1刘丹青.“唯补词”初探[J].汉语学习,1994(3):23-27. 被引量:68
  • 2夏齐富.程度副词再分类试探[J].安庆师范学院学报(社会科学版),1996,15(3):63-67. 被引量:18
  • 3王海涛,曹存根,高颖.基于领域本体的半结构化文本知识自动获取方法的设计和实现[J].计算机学报,2005,28(12):2010-2018. 被引量:31
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5TURNEY PD, LITTMAN ML. Measuring praise and criticism: inference of semantic orientation from association[ J]. ACM Transactions on Information System, 2003, 21(4): 315 -346.
  • 6YI J, NIBLACK W. Sentiment mining in WebFountain[ A]. Proceedings of the 21st International Conference on Data Engineering( ICDE 2005) [ C]. Washington, DC, USA: IEEE Computer Society Press, 2005. 1073 - 1083.
  • 7TURNEY PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[ A]. Proceedings of the Association for Computational Linguistics 40th Anniversary Meeting[C]. Philadelphia, PA, USA, 2002. 417-424.
  • 8YU H, HATZIVSSILOGLOU V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences[ A]. Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing[ C]. Sapporo, Japan, 2003, 129 - 136.
  • 9TSOU BKY, YUEN RWM. Polarity classification of celebrity coverage in the Chinese press[ A]. International Conference on Intelligence Analysis[ C], Virginia, USA, 2005.
  • 10LIU B, HUM. Opinion observer: analyzing and comparing opinions on the web[ A]. International World Wide Web Conference Committee (IW3C2) [ C]. Chiba, Japan, 2005.

共引文献361

同被引文献183

引证文献16

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部