期刊文献+

流式计算的研究与应用 被引量:1

Research and Application of Stream Computing
下载PDF
导出
摘要 计算机和互联网的飞速发展推动世界进入了大数据信息时代,传统技术已经不能满足海量数据处理的需求,很多大数据的处理技术和框架不断涌现出来。本文从当前的技术发展趋势和业务需求角度出发,研究了流式计算的相关框架,介绍了基于流式计算的用户点击流分析系统。使用流式计算的方法对用户点击流的分析可以实现实时更新用户数据和实时推荐的目的。 The rapid development of computer and Internet pushes us into the era of big data. Traditional technology can not meet the needs of data processing, and many big data processing technologies are emerging. This paper studies the relevant framework of stream computing from the perspectives of technology development and business demand, and introduces click stream analysis system. Using stream computing to analyse click stream, user data can be updated in real time and real-time recommendation can be achieved.
作者 李昊鹏
机构地区 太原理工大学
出处 《科技创新与生产力》 2017年第10期61-63,共3页 Sci-tech Innovation and Productivity
关键词 大数据 流式计算 实时计算 离线计算 big data stream computing real-time computing off-line computing
  • 相关文献

参考文献2

二级参考文献18

  • 1维克托·迈尔-舍恩伯格.大数据时代:生活、工作与思维的大变革[M].杭州:浙江人民出版社,2012(12).
  • 2Paul C Zikopoulos, Chris Eaton, Dirk de Roos, et al. Un-derstanding Big Data [ M ]. USA : The McGraw-Hill Com- panies, 2012.
  • 3Dean J, Ghemawat S . MapReduce:Simplified data process- ing on large clusters [ J ]. Communications of the ACM, 2008,51 ( 1 ) : 107-113.
  • 4Bryant R E, Katz R H, Lazowska E D. Big-Data compu- ting: Creating revolutionary breakthoughts in commerce, science, and society [ EB/OL ]. [ 2014-12-14 ]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf.
  • 5Hoppe A, Gryz J. Stream processing in a relational data- base:A case study[ C]//Proc. of the llth Int'l Database Engineering and Applications Syrup. 2007:216-224.
  • 6Cherniack M, Balakrishnan H, Balazinska M. Scalable Dis- tributed Stream Processing [ C ]//CIDR, Asilomar. CA. 2003.
  • 7Hoi S C H, Wang J L, Zhao P L. Online feature selection for mining big data[ C]//Proe. of the ACM SIGKDD Int' 1 Conf. 2012:93-100.
  • 8Michael K, Miller K W. Big data: New opportunities and new challenges[ J]. Computer,2013,46(6) :22-24.
  • 9Kumar R. Two computational paradigm for big data [ EB/OL]. (2012-7-22). [ 2014-12-14 ]. KDD summer school, http://kdd2012, sigkdd, org/sites/images/sum- merschool/Ravi-Kumar, pdf.
  • 10Jonatban Leibiusky, Gabriel Eisbrucb, Dario Simonassi. Getting Started with Storm [ M ]. Beijing: O ' REILLY, 2012:5-19.

共引文献32

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部