摘要
根据分形集上局部分数阶积分和第二种意义下广义s-凸函数的理论,建立了几个分形集R~α(0<α≤1)上涉及局部分数积分的Hermite-Hadamard型不等式.最后,给出了所得不等式在数值积分误差估计中的应用.
In the paper, using local frac t ion al calculus theory and the theory of general-ized s-convex func tion in the second sense on frac tal sets, some new Hermite-Hadamard type inequalities involving local fract ional integrals on frac tal sets Rα(0〈α≤1) were established. Finally, some applications of these inequalities to some error estimates for numerical integration were given.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第6期33-41,共9页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(61672356)
邵阳市科技计划项目(2016GX04)