摘要
为揭示拟南芥在盐胁迫下基因表达谱的变化,为解决盐害提出新的方向,以哥伦比亚野生型拟南芥为材料,利用数字表达谱技术(digital gene expression profiling,DGEP)分析盐胁迫组(200 mmol/L Na Cl处理2 h)和对照组的拟南芥叶片互补脱氧核糖核酸(complementary deoxyribonucleic acid,c DNA)文库,鉴定盐胁迫下拟南芥中差异表达的基因.结果显示,盐胁迫组中共有4 400个基因发生了差异表达,其中,1 513个基因上调表达,约占34.39%;2 887个下调表达,约占65.61%.这些基因主要富集于22个基因本体(gene ontology,GO)条目,包括核糖体构成、细胞膜和细胞器组成、应答胁迫、脯氨酸代谢等过程.进一步的KEGG(Kyoto encyclopedia of genes and genomes)分析表明,基础代谢、次生代谢以及光合和氧化代谢等32个通路的基因显著富集.此外,本研究筛选到6个显著差异表达的胚胎晚期富集蛋白(late embryogenesis abundant,LEA)基因,其中,3个LEA基因在盐胁迫条件下上调表达,3个下调表达,暗示着这6个LEA基因可能是拟南芥在应答盐胁迫过程发挥关键作用的抗逆基因.
Salt stress is one of the most serious abiotic stresses limiting crop growth and yield. Exploring the salt stress response gene can provide a new direction for solving salt damage. In order to reveal the Arabidopsis thaliana genes expression under salt stress,we explore the digital gene expression profiles( DGEP) of Arabidopsis thaliana( Columbia-0) leaves treated with water( control) or 200 mmol/L Na Cl for 2 h. By comparison of gene expression of the treatment and control,4 400 genes are identified to be differentially expressed,among which 1 513 genes are up-regulated,2 887 genes are down-regulated. Gene ontology( GO) reveals that these genes are involved in 22 GO terms such as structural constituent of ribosome,membrane,response to stimulus,response to stress,and proline metabolism. Thirty-two pathways are enriched by Kyoto encyclopedia of genes and genomes( KEGG),including basic metabolism,secondary metabolism and oxidation-reduction processes. Meanwhile,6 genes encoding lateembryogenesis abundant( LEA) proteins are identified to express differently,which indicates that these LEA genes might be important in stress response process.
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2017年第6期631-639,共9页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(31300215
31370289)~~
关键词
拟南芥
LEA基因
乙烯应答因子
盐胁迫
数字基因表达谱
差异表达基因
Arabidopsis thaliana
late embryogenesis abundant (L E A) gene
ethylene -responsive transcriptional factor (ERF)
salt stress
digital gene expression profiling (DGEP)
differentially expressed gene (DEG)