期刊文献+

一类互惠模型平衡态正解的存在性 被引量:1

The Existence of Positive Solutions of the Steady State System for Cooperative Model
下载PDF
导出
摘要 研究了一类带有饱和项的互惠模型在齐次Robin边界条件下平衡态正解的存在性.首先,利用最大值原理得到正解的先验估计;其次,以a为分歧参数,运用局部分歧理论,证明了系统在半平凡解(a*,ηa*,0)和(a',0,ηb)附近出现分歧现象;最后,结合全局分歧理论,将局部分支延拓到无穷. In this paper,the existence of positive solutions for a cooperative model with saturation under homogeneous Robin boundary condition is studied. Firstly,a prior estimates of positive solutions can be established by the maximum principle; Secondly,treating a as a bifurcation parameter,the bifurcations from semi-trivial solutions( a*,ηa*,0) and( a',0,ηb) by the local bifurcation theory; Finally,the local bifurcation solutions can be extended to infinite by the global bifurcation theory.
出处 《安徽师范大学学报(自然科学版)》 CAS 2017年第5期430-437,共8页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(61672021 11501496) 教育部高等学校博士点专项基金(200807180004)
关键词 互惠模型 平衡态正解 全局分歧 cooperative model coexistence state global bifurcation
  • 相关文献

参考文献6

二级参考文献53

  • 1黑力军,谢强军.一类扩散循环系统正解的存在性与稳定性[J].生物数学学报,2007,22(1):73-80. 被引量:5
  • 2凌智,林支桂.三种群互惠模型抛物系统解的整体存在与爆破[J].生物数学学报,2007,22(2):209-214. 被引量:7
  • 3Canada A, Magal P, Montero J A. Optimal control of harvesting in a nonlinear elliptic system arising from population dynamics[J]. Jo'tt~tal of Mathematical Analysis and Applications, 2001, 254(2):571 586.
  • 4Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992, 386- 619.
  • 5Pao C V. Stability and attractivity of periodic solutions of parabolic systems with time delay[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1):423 -450.
  • 6Kim K I, Lin Z G. Blowup in a three species cooperating model[J]. Applied Mathematics Letters, 2004, 17(1):89 -94.
  • 7Peng F. Global and blow-up solutions for a mutualistic model[J]. Nonlinear Analysis, 2008, 68(1):1898 -1908.
  • 8Korman P, Leung A. On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion [J]. Appl Anal, 1987,26(2): 145-160.
  • 9Li Z Y, De Mottoni P. Bifurcation for some systems of cooperative and predator-prey type [J]. J Partial Differential Equations, 1992,5: 25-36.
  • 10Casal A. Existence and uniqueness of coexistence states for a predator-prey model with diffusion [J]. Differential and Integral Equations, 1994,7(2) :411-439.

共引文献18

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部