摘要
当强奇异积分算子T及其由强奇异积分算子T和BMO函数b生成的交换子[b,T]在加权L^q有界时,利用调和分析的方法,证明了他们在加权Amalgam空间(L^q,L^p)~α上有界,并得到了从加权Amalgam空间(L^q(w),L^p)~α到加权Amalgam空间(L^q(w),L^p)~α的有界性.
When strongly singular integral operator T and its commutator [ b, T] generated by the strongly singular integral operator with BMO function b are bounded on weighted Lq, using the methods of harmonic analy- sis.The authors prove they are bounded on weighted Amalgam space (L^q ,L^p )^a ,and the boundedness from weigh- ted Amalgam space ( L^q (w) , L^p )^q to weighted Amalgam space ( L^q ( W ) , L^p )^a.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第6期930-936,共7页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金(11661075)
关键词
强奇异积分算子
交换子
权
Amalgam空间
有界性
Strongly singular integral operator
commutators
weighted
Amalgam spaces
boundedness