期刊文献+

Lenke3型成人特发性脊柱侧凸有限元模型的参数修正及有效性验证 被引量:6

Modification and validation of Lenke3 type adult idiopathic scoliosis finite element model
下载PDF
导出
摘要 背景:作者利用Mimics等有限元软件成功建立了Lenke3型成人特发性脊柱有限元模型,但模型是否最大程度的符合个体化患者的真实情况,需要进一步进行模型修正及有效性验证。目的:利用有限元分析软件对Lenke3型成人特发性脊柱有限元模型进行修正及有效性验证。方法:根据Lenke3型成人特发性脊柱侧凸模型的特点,利用三因素三水平正交试验优化有限元模型,使模型特点最大程度的接近真实,通过模拟左右侧屈实验,分段加载选取T_1-T_4、T_5-T_8、L_6-S_1(骶椎腰化)节段分别模拟左右侧屈、前屈后伸,左右旋转活动度与体外Busscher、Yamamoto实验进行对比研究,多方位验证模型有效性。结果与结论:(1)根据正交实验计算各因素各水平的平均差异和极差R,最后计算出A1B2C3的最佳组合可使模拟实验结果最符合个体的真实情况,使得有限元模拟实验结果与患者临床真实情况的差异最小。临床侧屈试验和参数修正前模型模拟的Cobb角度的变化差异值为54.44°,经过参数修正后模型的差异值减小为2.11°。修正后模型各侧凸Cobb角的最大差异为4.29°;(2)修正后的模型与仰卧左右侧屈位X射线片对比,2组配对数据均服从正态分布,故利用配对t检验进行计算,左侧屈时,P=0.082,P>0.05;右侧屈时,P=0.421,P>0.05;仰卧位P=0.160,P>0.05;(3)修正后的模型T_1-T_4节段各个方向的ROM:左屈3.25°,右屈3.32°,前屈2.52°,后伸2.89°,左侧旋转3.73°,右侧旋转3.76°,T5-T8节段各个方向的ROM:左屈1.39°,右屈1.43°,前屈1.35°,后伸1.34°,左旋2.09°,右旋2.11°;L_6/S_1节段各个方向的ROM:左屈5.17°,右屈5.19°,前屈8.92°,后伸7.35°,左旋1.41°,右旋1.42°,获得的结果与Busscher及Yamamoto等的实验结果进行比较,结果基本吻合;(4)结果提示,通过对初始模型进行参数修正处理,使得模型与患者真实的材料属性基本符合。修正后的模型具有较好的可靠性和有效性,为下一步模拟临床手术操作提供了有效的数据平台。 BACKGROUND: A Lenke3 type adult idiopathic scoliosis finite element model was established successfully usingMimics software. However, whether the model fits the actual conditions of individualized patients still requires a furtherrevision and validation.OBJECTIVE: To modify and validate the Lenke3 type adult idiopathic scoliosis finite element model by finite elementanalysis software.METHODS: Based on the characteristics of Lenke3 adult idiopathic scoliosis model, the three-factor and three-levelorthogonal experiment was used to optimize the finite element model, making it more close to the actual one. Thevertebrae at T1-T4, T5-T8 and L6-S1 levels (sacral lumbarization) were loaded to simulate left and right lateral flexion, aswell as extension and flexion, and the range of motion when left and right rotation were compared with Busscher andYamamoto experiments in vitro.RESULTS AND CONCLUSION: (1) According to the orthogonal experiment, the mean difference and range of eachfactor and each level were calculated, and finally A1B2C3 combination was the optimal one that can make the modellargely consistent with the real situation. The difference in Cobb angles between the clinical lateral flexion test and theparameter pre-modified model simulation was 54.44°, which was decreased to 2.11° after modification. Moreover, themaximum difference in each scoliosis Cobb angle of the modified model was 4.29°. (2) The simulation results of themodified model when compared with the X-ray images when left and right lateral flexion, the two data obeyed normaldistribution, so the paired t test was used: left lateral flexion, P =0.082 (P 〉 0.05); right lateral flexion, P=0.421 (P 〉 0.05);supine position, P=0.160 (P 〉 0.05). (3) The range of motion at T1-T4 segments was as followings: left flexion, 3.25°;right flexion, 3.32°; anteflexion 2.52°; extension, 2.89°; left rotation, 3.73°; right rotation 3.76°; the range of motion atT5-T8 segments: left flexion, 1.39°; right flexion, 1.43°; anteflexion 1.35°; extension, 1.34°; left rotation 2.09°; rightrotation 2.11°; the range of motion at L6/S1: left flexion: 5.17°; right flexion: 5.19°; anteflexion: 8.92°; extension: 7.35°; leftrotation: 1.41°; right rotation: 1.42°. The results were almost consistent with Busscher and Yamamoto experimentalresults. (4) To conclude, the model is in good agreement with the patient’s actual properties after modification. Themodified model has good reliability and validity, and provides valid data platform for simulating clinical operation in thefuture.
出处 《中国组织工程研究》 CAS 北大核心 2017年第31期4975-4982,共8页 Chinese Journal of Tissue Engineering Research
基金 内蒙古自治区自然科学基金(2016MS08141)~~
  • 相关文献

参考文献4

二级参考文献55

  • 1戴虹,吕东辉,杨云峰.基于CT序列图像的活体距骨分割及三维重建[J].微计算机信息,2006,22(10X):248-249. 被引量:6
  • 2汪正宇,刘祖德,王哲,王冬梅,王成焘,李新锋.脊柱侧凸前路去旋转椎体融合手术矫形的生物力学研究[J].中华实验外科杂志,2007,24(6):669-671. 被引量:4
  • 3Weinstein SL. Natural history. Spine 1999;24(24):2592-2600
  • 4Lonstein JE. Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res 2006;443:248-259
  • 5Belytschko T, Kulak RF, Schultz AB, et al.Finite element stress analysis of an intervertebral disc. J Biomech 1974;7(3):277-285
  • 6Liu YK, Ray G, Hirsch C. The resistance of the lumbar spine to direct shear. Orthop Clin North Am 1975;6(1):33-49
  • 7State Council of the People's Republic of China.Administrative Regulations on Medical Institution.1994-09-01.[2008-09-26].http://www.gov.cn/banshi/2005- 8/01/content 19113.htm
  • 8Polikeit A, Ferguson S J, Nolte LP, et al.Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 2003;12(4):413-420
  • 9Rohlmann A, Zander T, Schmidt H, et al.Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 2006;39(13):2484-2490
  • 10Zander T, Rohlmann A, Calisse J, et al.Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech (Bristol, Avon) 2001 ;16 Suppl 1 :S73-80

共引文献27

同被引文献44

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部