期刊文献+

基于特征值的阳性选择的图像边缘检测算法 被引量:4

Image Edge Detection Algorithm Based on Positive Selection of Eigenvalue Set
下载PDF
导出
摘要 边缘是图像的基本特征之一,携带了大量图像信息。边缘检测能够提取边界有用的结构信息,因此边缘检测具有重要作用。论文提出了基于特征值的阳性选择的图像边缘检测算法。该算法基于阳性选择原理,根据特征值匹配规则,综合图像的梯度、非极大值抑制、最大梯度差三个特征值构造"自我集",生成动态检测器对图像进行边缘检测。实验结果表明,该算法在边缘检测中可行,且对比canny和Prewitt边缘检测算法,能得到更好的图像边缘。 Edge is one of the basic features of the image, which carries a lot of image information. Edge detection can extract useful structural information of border and plays an important role. This paper presents an image edge detection algorithm based on positive selection of eigenvalue Set. The algorithm is based on the principle of positive selection. According to a matching rule of eigenvalue, gradient, nonmaxima suppression, the maximum gradient difference, are constructed to 'self set', to generate dynamic detector for image edge detection. Experimental results show that the algorithm is feasible to detect edge and can get better result than Canny algorithm and Prewitt algorithm.
出处 《科技通报》 北大核心 2017年第11期182-185,279,共5页 Bulletin of Science and Technology
基金 国家自然科学基金(No.41261091和No.61163023)
关键词 特征值 边缘检测 阳性选择 动态检测器 eigenvalue edge detection positive selection dynamic detector
  • 相关文献

参考文献3

二级参考文献23

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2郑文岭,马文丽.生物病毒与计算机病毒[J].科技导报,1995,13(2):3-6. 被引量:6
  • 3张海英,管洪娜,潘永湘.一种改进的阴性选择免疫算法[J].西安理工大学学报,2005,21(3):306-309. 被引量:9
  • 4张衡,吴礼发,张毓森,曾庆凯.一种r可变阴性选择算法及其仿真分析[J].计算机学报,2005,28(10):1614-1619. 被引量:43
  • 5卿斯汉,王超,何建波,李大治.即时通信蠕虫研究与发展[J].软件学报,2006,17(10):2118-2130. 被引量:17
  • 6Hofmeyr S A. An immunological model of distributed detection and its application to computer security[C]. University of New Mexico, Albuquerque, NM, 1999.
  • 7Forrest S,Perei Son A S, Alien L, et al. Selfnonself discrimination in a comput er[C]. Proceedings of the 1994 IEEE Symposium on Security and Privacy. Los Alamitos, CA, 1994.
  • 8Esponda F, Forrest S, Helman P. A formal framework for positive and negative detection scheme[J].IEEE Transaction on Systems, Man, and Cybernetics, 2003, 34(1): 357-373.
  • 9Singh S. Anomaly detection using negative selection based on the r-contiguous matching rule[C]. Timmis J, Bentley P J. Proc. of the 1st Int'l Conf. on Artificial Immune Systems (ICARIS). Canterbury: University of Kent at Canterbury, 2002:99-106.
  • 10Aickelin U, Greensmith J, Twycross J. Immune system approaches to intrusion detection-a review[C]. Proc. of the 3rd International Conference on Artificial Immune Systems. Catania Italy, 2004: 316-329.

共引文献7

同被引文献42

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部