期刊文献+

无线传感器网络中数据压缩感知算法研究

Research on Date Compressed Sensing Algorithm in Wireless Sensor Networks
下载PDF
导出
摘要 将JSM模型与无线传感器网络相互结合,在实际应用中通过节点采集相关数据,首先将这些数据输送至簇头节点,相应的簇头节点对传输过来的数据进行储存和处理,簇头节点还会针对节点传来的数据自动确立共同分量,接着测量共同分量与特征分量,测得的结果被传输至汇聚终端,最后重新构建和恢复传输来的信号。仿真结果显示,分布式压缩感知理论模型可以通过更少的测量值来还原出较精确的信号。 This paper will combine the JSM model and the wireless sensor network with each other, in the practical application through the node data collection, first will transfer these data to the cluster head node, cluster head node corresponding to the storage and processing of the data transmitted from the cluster head node but also for node data from the automatic establishment of common components, then measuring together the component and characteristics of components, the measured results are transmitted to the sink terminal, finally re construction and signal recovery to transmit. Simulation results show that the distributed compressed sensing theory model can be used to restore the more accurate signal with less measurement values.
作者 王磊
出处 《科技通报》 北大核心 2017年第11期201-204,共4页 Bulletin of Science and Technology
基金 重庆市教委科学技术研究项目(kj130423)
关键词 压缩感知 数据压缩 无线传感器网络 JSM compressed sensing data compression wireless sensor networks JSM
  • 相关文献

参考文献3

二级参考文献22

  • 1王天荆,杨震,胡海峰.基于遗传算法的无线传感器网络自适应数据融合路由算法[J].电子与信息学报,2007,29(9):2244-2247. 被引量:15
  • 2Mallat S G, ZHANG Zhifeng. Matching Pursuits with Time-Frequency Dictionaries [J]. IEEE Trans Signal Processing, 1993, 41(12): 3397-3415.
  • 3Bergeaud F, Mallat S G. Processing Images and Sounds with Matching Pursuits [C]//Proc SPIE Conference on Wavelet Applications in Signal and Image Processing. San Diego: [s. n. ], 1995.
  • 4Ren H, Chang C I. A Generalized Orthogonal Subspace Projection Approach to Unsupervised Multispectral Image Classification [J]. IEEE Trans on Geoscience and Remote Sensing, 2000, 38(6).. 2515-2528.
  • 5Baraniuk R G. Compressive Sensing [J]. IEEE Signal Processing Magazine, 2007, 24: 1-9.
  • 6Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks: A Survey [J]. Computer Networks, 2002, 38(4): 393-422.
  • 7Wang N C, Huang Y F, Chen J S, et al. Energy Aware Data Aggregation for Grid-Based Wireless Sensor Networks with a Mobile Sink [J]. Wireless Personal Communications, 2007, 43(4): 1539-1551.
  • 8Sinha A, Lobiyal D K. An Entropic Approach to Data Aggregation with Divergence Measure Based Clustering in Sensor Network [J]. Advances in Computing and Communieations, 2011, 192(7) : 132-142.
  • 9Candes E J, Wakin M B. An Introduction to Compressive Sampling [J]. IEEE Signal Processing Magazine, 2012, 25(2). 21-30.
  • 10Galluecio L, Palazzo S, Campbell A T. Modeling and Designing Efficient Data Aggregation in Wireless Sensor Networks under Entropy and Energy Bounds [J]. Wireless Sensor Networks, 2009, 16(2): 175-183.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部