期刊文献+

基于工况识别与多元非线性回归优化的能量管理策略 被引量:7

Energy Management Strategy Based on Type Recognition and Multivariate Nonlinear Regression Optimization
下载PDF
导出
摘要 为给混合动力汽车智能管理策略提供基础,开展了基于学习向量化(LVQ)神经网络的工况模式识别算法研究。选取4种典型微观道路类型工况和3类标准循环工况,提取11个参数为训练特征数据,建立了LVQ神经网络工况模式识别算法;在此基础上,以某款混联式动力系统为例,结合多元非线性回归分析制定相应控制策略;最后,基于Simulink仿真平台建立LVQ神经网络工况模式识别及整车仿真模型,分别采用中国城市典型循环工况以及构建UDDS+NYCC+UDDS的标准行驶工况进行道路工况识别验证。结果表明,所建立的LVQ神经网络工况识别算法可以准确识别工况模式并能有效提高能量管理策略的控制效果。 The type recognition algorithm of driving conditions was studied based on LVQ neural network,to provide the basis for the intelligent management strategy of hybrid electric vehicles.First,11 characteristic parameters were extracted from 4 typical road type conditions and the 3 kinds of standard cycle conditions to train the data.Then,the LVQ neural network type recognition algorithm of driving condition was developed.Based on this,a hybrid power system was as an example,which combined with multiple nonlinear regression analysis to develop the corresponding control strategy.Finally,LVQ neural network type recognition simulation model of driving condition was established based on the Simulink simulation platform,type recognition tests were carried on under the Chinese city typical cycle road conditions,standard condition recognition tests were carried on by constructing UDDS+NYCC+UDDS driving conditions.The results show that the established LVQ neural network may accurately identify the type of driving condition types and the control effectiveness of the energy management strategy is improved effectively.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2017年第22期2695-2700,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51505086)
关键词 学习向量化神经网络 工况识别 循环工况 能量管理 learning vector quantization(LVQ) neuralnetwork type recognition driving cycle type energy management
  • 相关文献

参考文献6

二级参考文献53

  • 1马志雄,朱西产,李孟良,乔维高,张富兴.动态聚类法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报,2005,27(11):69-71. 被引量:27
  • 2艾国和,乔维高,李孟良,张富兴,朱西产.车辆行驶运动学参数构成分析[J].公路交通科技,2006,23(2):154-157. 被引量:15
  • 3Dembski N, Guezennec Y, Soliman A. Analysis and Experimental Refinement of Real-world Driving Cycles[ C]. SAE Paper 2002 - 01 - 0069.
  • 4Andre Michel, Hickman A John, Hassel Dieter. Driving Cycles for Emission Messurements Under European Condition [ C ]. SAE Paper 950926.
  • 5Shi Shuming, Zou Guilin, Liu Li, et al. Study on the Fuzzy Clus- tering Method of the Microtrips for Passenger Car Driving Cycle in Changchun[ C ]. Vehile Power and Propulsion Conference, 2009 : 1555 - 1560.
  • 6陈超,邹滢.SPSS15.0中文版常用功能与应用实例精讲[M].北京:电子工业出版社,2008:263-264.
  • 7ERICSSON E.Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J].Transportation Research Part D,2001,6(5):325-341.
  • 8WILLIAMSON S S,EMADI A,DEWAN A.Effects of varying driving schedules on the drive train efficiency and performance characteristics of a parallel diesel-hybrid bus,SAE Paper,2005-01-3477[R].USA:Society of Automotive Engineers,2005.
  • 9DUOBA M,LOHSE-BUSCH H,BOHN T.Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles[R].Monaco:International Electric Vehicle Symposium,2004.
  • 10SHARER P,LEYDIER R,ROUSSEAU A.Impact of drive cycle aggressiveness and speed on hevs fuel consumption sensitivity,SAE Paper,2007-01-0281[R].USA:Society of Automotive Engineers,2007.

共引文献153

同被引文献41

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部