期刊文献+

基于桥梁用户的多社交网络影响最大化 被引量:1

Influence Maximization on Multi-Social Networks Based on Bridge Users
下载PDF
导出
摘要 单社交网络影响最大化问题已经得到了学术界的广泛关注与研究,然而如今多社交网络之间呈现信息互通的趋势.多社交网络中存在的桥梁用户(Bridge User,BU)(即同时拥有多个社交网络账户的用户),可将信息从一个社交网络分享至另外一个社交网络,信息传播不再局限于单个网络.本文针对多社交网络信息影响最大化进行了相关研究,分析了桥梁用户在多社交网络信息传播中的作用,提出了基于桥梁用户的多社交网络聚合算法,并在得到的聚合图上对多社交网络影响最大化问题进行求解.仿真实验对多社交网络影响最大化问题进行了求解,并证实了桥梁用户在多社交网络信息传播时的作用. The influence maximization on single network has aroused widespread concerns and has become a research hotspot. However, there is a trend of information exchange between multi-social networks. The bridge user(BU), which refers to the user that has multi-accounts on multi-social networks, has the ability to share the information from one social network to another. Due to this, information spread is not limited to a single network. In this paper, we study the influence maximization on multi-social networks. We analyze the role of bridge user in multi-social networks information spread and propose a multi-social network aggregation algorithm based on bridge users, then we solve the problem of influence maximization on multi-social networks based on aggregate graph. Experiments solve the problem of influence maximization on multi-social networks and confirm the role of bridge users in the information spread on multi-social networks.
出处 《计算机系统应用》 2017年第11期199-204,共6页 Computer Systems & Applications
基金 国家自然科学基金(U1405255) 福建省自然科学基金(2016J01287) 福建师范大学科研创新团队(IRTL1207)
关键词 影响最大化 桥梁用户 多社交网络 信息传播 聚合图 influence maximization bridge users multi-social networks information spread aggregate graph
  • 相关文献

参考文献3

二级参考文献79

  • 1Misner I R. The Word's Best Known Marketing Secret, Building Your Business with Word-of-Mouth Marketing. San Jose. California. USA, Bard Press. 1999.
  • 2Domingos P. Richardson M. Mining the network value of customers/ /Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco. USA. 2001, 57-66.
  • 3Richardson M. Domingos P. Mining knowledge-sharing sites for viral marketing/ /Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton. Canada. 2002, 61-70.
  • 4Kempe D. Kleinberg J. Tardos E. Maximizing the spread of influence through a social network/ /Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2003: 137-146.
  • 5Kempe D. Kleinberg J. Tardos E. Influential nodes in a diffusion model for social networks/ /Caires L. Italiano G F. Monteiro L. et al, eds. Automata. Languages and Programming. Libson , Portugal. 2005, 1127-1138.
  • 6Chen W. Wang C. Wang Y. Scalable influence maximization for prevalent viral marketing in large- scale social networks/ / Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2010, 1029-1038.
  • 7Leskovec J. Krause A. Guestrin C. et al. Cost-effective outbreak detection in networks/ /Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007, 420-429.
  • 8Chen W. Wang Y. Yang S. Efficient influence maximization in social networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France. 2009, 199-208.
  • 9Goyal A. Lu W. Lakshmanan L V. CELF++, Optimizing the greedy algorithm for influence maximization in social networks/ /Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad. India. 2011, 47-48.
  • 10Kimura M. Saito K. Approximate solutions for the influence maximization problem in a social network/ /Gabrys B. Howlett R J. Jain L C eds. Knowledge-Based Intelligent Information and Engineering Systems. Bournemouth , UK. 2006, 937-944.

共引文献38

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部