期刊文献+

锻压温度对不锈钢法兰耐磨损性能的影响 被引量:1

Effect of Forging Temperature on Wear Resistance of Stainless Steel Flange
原文传递
导出
摘要 采用不同的始锻温度和终锻温度进行了F40-0.2Cr新型不锈钢的锻压试验,并进行了不锈钢法兰试样磨损性能和腐蚀性能的测试与分析。结果表明:在试验条件下,随始锻温度从975℃增大到1075℃或随终锻温度从800℃增大到900℃时,不锈钢试样的磨损性能和腐蚀性能均先升高后下降。不锈钢的始锻温度和终锻温度分别优选为1050、850℃。在其他条件相同的情况下,与975℃始锻相比,1050℃始锻时不锈钢试样的磨损体积减小45%,腐蚀电位正移151 m V;与800℃终锻试样相比,850℃终锻时不锈钢的磨损体积减小42%,腐蚀电位正移134 m V。 The forging test of F40-0.2Cr new type stainless steel was carried out by using different initial forging temperature and final forging temperature. And the wear resistance and corrosion resistance of the stainless steel flange were tested and analyzed. The results show that under test conditions, with the initial forging temperature increasing from 975℃ to 1075℃ or the final forging temperature increasing from 800℃ to 900℃, the wear resistance and corrosion resistance of the stainless steel samples improve firstly and then decrease. The optimized initial forging temperature and final forging temperature are 1050℃ and 850℃, respectively. In the same conditions as others, compared with the sample of the initial forging at 975 ℃, the wear volume of the stainless steel sample forged by the initial forging at 10750C decreases by 45%, while the corrosion potential shifts positively by 151 mV. Compared with sample of final forging at 800℃ ,the wear volume of the stainless steel sample forged by the finial forging at 850~C decreases by 42% and the corrosion potential shifts positively by 134 mV.
作者 黄海
出处 《热加工工艺》 CSCD 北大核心 2017年第21期126-128,133,共4页 Hot Working Technology
基金 河南省科学技术厅项目(豫科鉴委会(2011)第309号)
关键词 锻压温度 磨损性能 腐蚀性能 始锻温度 终锻温度 forging temperature wear resistance corrosion resistance initial forging temperature final forgingtemperature
  • 相关文献

参考文献5

二级参考文献31

  • 1颜永年,刘海霞,曾攀,林峰,张磊,张人佶.重型钢丝缠绕预应力剖分-坎合结构概述[J].机械工程学报,2009,45(11):306-311. 被引量:13
  • 2李润方,胡忠民,李健.轧机机架热弹应力应变分析及计算机图形显示[J].机械强度,1993,15(3):37-40. 被引量:2
  • 3夏卿坤,胡冠昱.形变诱导铁素体相变技术[J].长沙大学学报,2005,19(2):15-18. 被引量:6
  • 4Dong Han, Sun Xinjun. Deformation Induced Ferrite Transformation in Low Carbon Steels. Current Opinion in Solid State and Materials Science,2005,9(6) :269.
  • 5Gamsjager E, Svoboda J, Fischer F D. Austenite-to-ferrite Phase Transformation in Low-alloyed Steels. Computational Materials Science ,2005,32:360.
  • 6Dehghan-Manshadi,Bamett M R,Hodgson P D. RecrystaUiza- tion in AISI 304 austenitic stainless steel during and after hot deformation [J]. Materials Science and Engineering A, 2008,485 : 664-672.
  • 7Nalawadc R S, Puranik A J, Balachandran G, et al. Simulation of hot rolling defomlation at intermediate passes and its industrialvalidity[ J ]. International Journal of Mechanical Sciences, 2013, 77(77) : 8-16.
  • 8Ding H, Hirai K, Homma T, et al. Numerical simulation fir microstructure evolution in AM50 Mg allo) during hot roiling[ J ]. Computational Materials Science, 2010, 47(4) : 919-925.
  • 9李长发.工程热力学与传热学[M].北京:中罔农业大学出版社,2004.
  • 10Chen W C, Samarasekera 1 V, Hawboh E B phenomena governing heat transfer during Fundamemal Metallurgical Transactions A, 1993, 24 ( 6 ) : 1307-1320.

共引文献23

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部