摘要
针对(2+1)维Sawada-Kotera方程,结合Lie对称群约化法、扰动Painlevé截断展开法和同宿测试法,求得该方程带初值扰动参数和时间任意函数的非行波周期解和扭结解。结果表明该方程具有丰富的动力学内涵,为解释一些物理现象提供了解析工具。
Aiming at (2+l)-dimensional Sawada-Kotera equation, the new non-traveling wave periodic and kink solutions with an initial value perturbation parameter and an arbitrary function of time are obtained combining Lie symmetry group reduction method, perturbation Painlev4 truncation expansion method and homoclinic test method. Results show that the equation has rich dynamic connotation, and provides an analytical tool to explain some physical phenomena.
作者
姜颖
鲜大权
JIANG Ying;XIAN Daquan(School of Science, Southwest University of Science and Technology, Mianyang 621010, China)
出处
《量子电子学报》
CSCD
北大核心
2017年第6期700-704,共5页
Chinese Journal of Quantum Electronics
基金
国家自然科学基金
11204250
11202175~~