期刊文献+

带有侧耦合腔的Y型MIM 波导的传输特性研究

Transmission characteristics of a Y-shaped MIM plasmonic waveguide with side-coupled cavities
下载PDF
导出
摘要 本文设计了一种带有两个水平侧耦合Fabry-Perot(FP)共振腔的基于金属-绝缘体-金属(MIM)结构的Y型表面等离子体光波导结构。传输谱存在一个较窄的阻带,两个腔的长度相同时,两个输出端的传输谱几乎完全重合;两个腔长度不同时每个输出端的传输谱上的阻带位置也不同,并且当一个输出端透射率达到最小时,另一个输出端的透射率接近最大。通过调节两个FP共振腔的长度?宽度以及腔内介质的折射率,可以调节表面等离子体激元在腔内发生共振从而形成驻波的工作波长,实现探测灵敏度高达1280 nm/RIU?品质因子大于200的传感特性。利用这些特性可以在两个输出端对不同的工作波长实现滤波?开关?分束等功能,因此这种亚波长表面等离子体光波导结构在集成光学滤波器?纳米光开关?分束器以及折射率传感器等领域有一定的应用前景? A plasmonic Y-shaped metal-insulator-metal (MIM) plasmonic waveguide with two side-coupled Fabry-Perot (FP) resonant cavities is proposed. Simulation results show that there is a stopband existing in the transmission spectrum of each output port. When the lengths of the two cavities are equal, the transmission spectra of the two output ports are almost coincident. But if they are not equal, the two stopbands are not in the same place. Meanwhile, the transmission dip of one output port corresponds to the transmission peak of another port. By adjusting the length, width and refractive index of the two FP cavities, one can control the resonant wavelength of each cavity to further achieve functions of filtering, power splitting, switching and refractive index sensing. Results show that the sensing sensitivity is up to 1280 nm/RIU with its figure of merit above 200 when the waveguide is used as a refractive sensor. The proposed waveguide structure has potential applications in the fields of integrated optical filter, nano-optic switch, power splitter and refractive sensor in subwavelength scale.
出处 《光电工程》 CAS CSCD 北大核心 2017年第10期1004-1013,共10页 Opto-Electronic Engineering
基金 国家自然科学基金(61775126 61475198) 山西省自然科学基金(2016011038)资助项目
关键词 表面等离子体波导 传输谱 共振 surface plasmonic waveguide transmission spectrum resonance
  • 相关文献

参考文献7

二级参考文献64

  • 1刘叶新,陈晓文,邢晓波,吴添洪,傅思镜,文锦辉,林位株.具有调制功能的多模干涉型1×3分束器[J].光学学报,2005,25(10):1406-1410. 被引量:3
  • 2W.L.Barnes,A.Dereux,T.W.Ebbesen.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
  • 3E.Ozbay.Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
  • 4S.I.Bozhevolnyi,V.S.Volkov,E.Devaux et al..Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440(7083):508-511.
  • 5S.A.Maier.Plasmonics:the promise of highly integrated optical devices[J].IEEE J.Sel.Topics Quant.Electron.,2006,12(6):1671-1677.
  • 6Wenrui Xue,Yanan Guo,Peng Li et al..Propagation properties of a surface plasmonic waveguide with double elliptical air cores[J].Opt.Express,2008,16(14):10710-10720.
  • 7Z.Zhu,T.G.Brown.Full-vectorial finite-difference analysis of microstructured optical fibers[J].Opt.Express,2002,10(17):853-864.
  • 8S.Guo,F.Wu,S.Albin.Loss and dispersion analysis of microstructured optical fibers by finite-difference method[J].Opt.Express,2004,12(15):3341-3352.
  • 9C.Yu,H.C.Chang.Yee-mesh-based finite difference eigenmode solver with PML absorbing boundaray conditions for optical waveguides and photonic craystal fibers[J].Opt.Express,2004,12(25):6165-6177.
  • 10S.D.Gedney.An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices[J].IEEE Trans.Antennas and Propagation,1996,44(12):1630-1639.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部