期刊文献+

燃气管网模式识别泄漏检测方法的敏感性研究

Study on the Sensitivity of Detection Method of Pattern Recognition of Gas Pipeline Leakage
下载PDF
导出
摘要 对模式识别燃气管网泄漏检测方法进行了系统的阐述,利用天津城建大学燃气管网实验平台,对基于支持向量机模式识别燃气管网泄漏检测方法进行验证,并提出该方法泄漏检测的敏感程度问题.通过实验,对不同泄漏量的情况下模式识别燃气泄漏检测方法所能达到的准确率进行统计,发现在泄漏量小到一定程度时,模式识别泄漏检测将无法正确区分管网是否发生泄漏;分析了泄漏点位置对节点压力的影响,发现泄漏点位置影响泄漏检测准确率. In this paper,the detection method of pattern recognition for gas pipeline leakage is systematically expounded. Based on the experiment platform of gas pipeline network in Tianjin Chengjian University,the detection method of gas pipeline network leakage based on support vector machine pattern recognition is verified, and the question of the sensitivity of the method is put forward. Through the experiment,the accuracy of the gas leakage detection method for pattern recognition with different leakage rate is calculated through statistics. The research finds that in a small amount of leakage to a certain extent, the pattern recognition leakage detection will not be able to correctly identify the leakage of the pipe network. It also analyzes the influence of the leakage location on the node pressure,and finds the influence of the leakage location on the leakage detection accuracy.
出处 《天津城建大学学报》 2017年第6期448-452,共5页 Journal of Tianjin Chengjian University
关键词 模式识别 燃气管网 燃气泄漏 检测敏感度 pattern recognition gas pipeline gas leakage detection sensitivity
  • 相关文献

参考文献4

二级参考文献22

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2杨杰,陈悦,王桂增,张正伟,叶昊.输油管网泄漏检测与定位方法的研究[J].信息与控制,2005,34(5):528-531. 被引量:2
  • 3张红兵,李长俊,彭善碧.输气管道故障诊断中的实时模型法[J].天然气工业,2005,25(10):103-105. 被引量:11
  • 4李军,徐永生,玉建军.燃气管道泄漏检测新技术[J].煤气与热力,2007,27(7):56-59. 被引量:11
  • 5冈察雷斯RC 汤姆逊MG 濮群 徐凤家 徐光估译.句法模式识别[M].北京:清华大学出版社,1984..
  • 6MCALLISTER E W.Pipe line rules of thumb handbook:quick and accurate solutions to your everyday pipe line problems[M].Houston USA:Gulf Professional Publishing,1998.
  • 7严铭卿,廉乐明,黎光华,等.燃气输配工程分析[M].北京:中国石油工业出版社,2007.
  • 8Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011,2 (3) : 75--102.
  • 9Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In- Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2012,2 -- 16.
  • 10Iehihashi H, Honda K, Notsu A. Comparison of scaling behavior between fuzzy c-means based classifier with many parameters and LibSVM. Fuzzy Systems,2011,35(2) :386--393.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部