期刊文献+

基于观测矩阵优化的自适应压缩感知算法 被引量:7

Adaptive compressed sensing algorithm based on observation matrix optimization
下载PDF
导出
摘要 为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 d B以上,低于典型的贝叶斯方法 5 d B以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。 In order to improve the anti-noise performance of the traditional Compressed Sensing (CS) recovery algorithm, a kind of Adaptive Compressed Sensing (ACS) algorithm was proposed based on the idea of observation matrix optimization and adaptive observation. The observed energy was all aUocated in the support position estimated by the traditional CS recovery algorithm, which could effectively improve the observed Signal-to-Noise Ratio (SNR) owing to the support positions contained in the estimated support set. Then, the optimal new observation vector was derived from the perspective of observation matrix optimization, that is, its nonzero part was designed as the eigenvector of Gram matrix. The simulation results show that, the energy growth ~ate of non-diagonal elements of Gram matrix is less than that of the traditional CS algorithm with the increase of the number of observations. And the reconstruction normalized mean square error of the proposed algorithm is respectively lower than that of the traditional CS algorithm and the typical Bayesian method above 10 dB and 5 dB under the same conditions of number of observations, sparsity and SNR. The analysis shows that the proposed adaptive observation mechanism can effectively improve the energy efficiency and anti-noise performance of the traditional CS recovery algorithm.
作者 胡强 林云
出处 《计算机应用》 CSCD 北大核心 2017年第12期3381-3385,共5页 journal of Computer Applications
关键词 自适应压缩感知 观测矩阵优化 观测信噪比 特征分解 GRAM矩阵 adaptive compressed sensing observation matrix optimization observed Signal-to-Noise Ratio (SNR) feature decomposition Gram matrix
  • 相关文献

参考文献3

二级参考文献52

  • 1MITOLA J. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18.
  • 2CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
  • 3CANDES E, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Compute Math, 2006, 6 (2): 227 - 254.
  • 4DONOHO D L. Compressed sensing[J]. IEEE Transactions on Infor- mation Theory, 2006, 52(4): 1289-1306.
  • 5TIAN Z, GIANNAKIS G B. Compressed sensing for wideband cogni- tive radios[A]. International Conference on Acoustics, Speech, and Signal Processing[C]. Honolulu, USA, 2007. 1357-1360.
  • 6POLO Y L, WANG Y, PANDHARIPANDE A. Compressive wide-band spectrum sensing[A]. International Conference on Acous- tics, Speech, and Signal Processing[C]. San Diego, USA, 2009. 178-183.
  • 7FANZI Z, TIAN Z, CHEN L. Distributed compressive wideband spectrum sensing in cooperative multi-hop cognitive networks[A]. IEEE International Conference on Communications[C]. Cape Town, South Africa, 2010.1-5.
  • 8KHALAF Z, NAFKHA A, PALICOT J. Blind spectrum detector for cognitive radio using compressed sensing[A]. Global Telecommunica- tions Conference[C]. Hustun, USA, 2011.1-5.
  • 9ARIANANDA D, LEUS G. Compressive wideband power spectrum estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4775..4789.
  • 10LAGUNAS E, NAJAR M. Sparse correlation matching-based spec- trum sensing for open spectrum communications[J]. EURASIP Journal on Advances in Signal Processing, 2012, 3 1:1-14.

共引文献22

同被引文献59

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部