期刊文献+

无高斯噪声的全同态加密方案 被引量:3

Fully homomorphic encryption scheme without Gaussian noise
下载PDF
导出
摘要 基于带舍入学习(LWR)问题,一个分级全同态加密方案最近被提出。LWR问题是带误差学习(LWE)问题的变型,但它省掉了代价高昂的高斯噪声抽样,因此与现有基于LWE问题的全同态加密方案相比,该基于LWR问题的全同态加密方案具有更高的计算效率。然而,该基于LWR问题的全同态加密方案在同态运算时需要输入用户的运算密钥。因此,基于LWR问题构造了一个新的分级全同态加密方案,该方案在同态运算时不需要输入用户的运算密钥。鉴于所提方案可应用于构造基于身份的全同态加密方案、基于属性的全同态加密方案等,它具有比最近所提出的基于LWR问题的全同态加密方案更广泛的应用场景。 Much lately, a leveled fully homomorphic encryption scheme was proposed based on the Learning With Rounding (LWR) problem. The LWR problem is a variant of the Learning With Errors (LWE) problem, but it dispenses with the costly Ganssian noise sampling. Thus, compared with the existing LWE-based fully homomorphic encryption schemes, the proposed LWR-based fully homomorphic encryption scheme has much higher efficiency. But then, the user's evaluation key was needed to be obtained in the homomorphic evaluator of the proposed LWR-based fully homomorphic encryption scheme. Accordingly, a new leveled fully homomorphic encryption scheme was constructed based on the LWR problem, and the user's evaluation key was not needed to be obtained in the homomorphic evaluator of the new fully homomorphic encryption scheme. Since the new proposed fully homomorphic encryption scheme can be used to construct the schemes such as identity-based fully homomorphic encryption schemes, and attribute-based fully homomorphic encryption schemes, the new proposed scheme has wider application than the lately proposed LWR-based fully homomorphic encryption scheme.
出处 《计算机应用》 CSCD 北大核心 2017年第12期3430-3434,共5页 journal of Computer Applications
基金 河北省重点研发计划项目(16210701) 河北省高等学校科学技术研究项目(ZD2017228)~~
关键词 全同态加密 分级全同态加密 带舍入学习问题 带误差学习问题 高斯噪声抽样 Fully Homomorphie Eneryption (FHE) leveled Fully Homomorphie Eneryption (FHE) Learning WithRounding (LWR) problem Learning With Errors (LWE) problem Gaussian noise sampling
  • 相关文献

参考文献3

二级参考文献19

  • 1RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms [ J]. Foundations of Secure Computa- tion, 1978, 4(1l): 169-180.
  • 2BENALOH J. Dense probabilistic encryption [ C]// Proceedings of the 1994 Workshop on Selected Areas of Cryptography. Berlin: Springer, 1994: 120-128.
  • 3PAll,HER P. Public-key cryptosystems based on composite degree siduosity classes [C ]// EUROCRYYrl 99: Proceedings of the 17th International Conterence on Theory and Application of Crypto- graphic Techniques. Berlin: Springer,1999:223-238.
  • 4BONEH D, GOH E J, N1SSIM K. Evaluating 2-DNF formulas on ciphertcxts [ C]//TCC' 05: Proceedings of the Second International Conference on Theory of Cryptugraphy. Berlin: Springer, 2005:325 - 341.
  • 5GENTRY C. Fully hunlomorphie encryption using ideal lattices [ C]// Proceedings of the 41 st ACM Symposium on Theory of Com- puting. New York: ACM, 2009:169-178.
  • 6VAN DJK M, GENTRY C, ItALEVI S, ctal. Fully homomorphic entryptiun over the integers [C]// EUROCRYPT' 10: Proceedings of the 29th Annual lutelalatiunal Conference on Theory and Applica- tions of Cryptographic Techniques. Berlin: Springer, 2010: 24- 43.
  • 7SMART N P, VEHCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes [C]// PKC' 10: Pro- eeediugs of the 13th International Conference on Practice and Theoryin Public Key Cryptography. Berlin: Springer, 2010:420-443.
  • 8GENTRY C, HALEVI S, SMART N P. Fully homomorphic cneryp- tion with polylog overhead [ C]//EUROCRYtYF' 12: Proceedings of the 31 st Annual hlternationa[ Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2012:465-482.
  • 9GENTRY C, SAHAI A, WATERS B. Homomorphie encryption from learning with enors: conceptually-simpler, asymptotically-fas- ter, attribute-based [ C]// CRYPTO 2013: Proceedings of the 33rd Annual Cryptology Conference on Advances in Cryptol%,'y. Berlin: Springer, 2013:75-92.
  • 10SHAMIR A. Identity-based cyptosystems and signature schemes [ C]// Proceedings of CRYPTO 84 on Advances in Ctyptology. Berlin: Springer, 1984:47-53.

共引文献26

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部