期刊文献+

基于Snake模型的图像分割新算法 被引量:8

Novel image segmentation algorithm based on Snake model
下载PDF
导出
摘要 针对目前基于Snake模型的图像分割算法普遍存在噪声鲁棒性差、适用范围受限、易发生弱边缘泄露以及轮廓曲线难以收敛到细小深凹边界的缺陷,提出了一种基于Snake模型的图像分割新算法。首先,选取新的扩散项代替具有各向同性光滑作用的拉普拉斯算子;其次,引入p-拉普拉斯泛函到平滑能量项中强化法线方向外力;最后,利用边缘保护项使外力场方向与边缘方向一致,以防止弱边缘泄漏并促使轮廓线收敛到细小深凹边界。实验结果表明,所提模型不仅克服了现有基于Snake模型的图像分割算法的缺陷,具有更好的分割效果,明显提高了抗噪性能和角点定位精度,而且耗时更少,适用于噪声图像、医学图像以及含有很多弱边缘的自然图像分割。 The existing image segmentation algorithms based on Snake model generally have the disadvantages of poor noise robustness, limited application range, easy leakage of weak edge and difficult to converge to small and deep concave boundary of contour curve. In order to solve the problems, a novel image segmentation algorithm based on Snake model was proposed. Firstly, the Laplaeian operator with isotropic smoothness was replaced by the new chosen diffusion term. Secondly, the p- Laplacian functional was introduced into the smooth energy term to strengthen the external force in the normal direction. Finally, the edge-preserving term was used to keep the external force field parallel to the edge direction, so as to prevent the weak edge from leaking and promote the contour curve to converge to the small and deep concave boundary. The experimental results show that, the proposed model not only overcomes the drawbacks of the existing image segmentation algorithms based on Snake model, possesses better segmentation effect, improves the anti-noise performance and comer positioning accuracy obviously, but also consumes less time. The proposed model is suitable for segmenting noise images, medical images, and natural images with many weak edges.
出处 《计算机应用》 CSCD 北大核心 2017年第12期3523-3527,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61571017)~~
关键词 图像分割 SNAKE模型 梯度向量流 边缘保护 弱边缘 image segmentation Snake model gradient vector flow edge-preserving weak edge
  • 相关文献

参考文献3

二级参考文献68

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2KASS M, WITKIN A, TERSOPOULOS D. Snakes: active contour models [ J]. International Journal of Computer Vision, 1988,1 (4) :321-331.
  • 3COHEN L D, COHEN I. A finite element method applied to new ac- tive contour models and 3D reconstruction from cross seetions[ C ]// Proc of the 3rd International Conference on Computer Vision. Wash- ington DC : IEEE Computer Society, 1990:587-591.
  • 4JANG K S. Lip contour extraction based on active shape model and Snakes[ J]. International Journal of Computer Science and Net- work Security,2007,7(10) : 148-153.
  • 5KABOLIZADE M, EBADI H, AHMADI S. An improved Snake mo- del for automatic extraction of buildings from urban aerial images and LiDAR data[J]. Computers, Environment and Urban Systems, 2010,34(5 ) :435-441.
  • 6VARD A, JAMSHIDI K, MOVAHHEDINIA N. Small object detec- tion in cluttered image using a correlation based active contour model [J]. Pattern Recognition Letters,2012,33(5) :543-553.
  • 7SUNG J W, KIM D J. A background robust active appearance model using active contour technique [ J ]. Pattern Recognition, 2007,40 (1) :108-120.
  • 8FANG Hua, KIM J W, JANG J W. A fast Snake algorithm for track- ing multiple objects[J]. Journal of Information Processing Sys- tems,2011,7(3) :519-530.
  • 9WANG Qing, RONNEBERGER O, SCHULZE E, et al. Using lateral coupled snakes for modeling the contours of worms[ C]//Proc of Dy- namic 3D Imaging Workshop. Berlin: Springer-Verlag, 2009: 542- 551.
  • 10CLEMENT J, NOVAS N, GAZQUEZ J, et al. An active contour computer algorithm for the classification of cucumbers [ J ]. Compu- ters and Electronics in Agriculture,2013,92(3) :75-81.

共引文献36

同被引文献91

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部