期刊文献+

无限最大间隔线性判别投影模型

Infinite Max-margin Linear Discriminant Projection Model
下载PDF
导出
摘要 针对具有多模分布结构的高维数据的分类问题,该文提出一种无限最大间隔线性判别投影(i MMLDP)模型。与现有全局投影方法不同,模型通过联合Dirichlet过程及最大间隔线性判别投影(MMLDP)模型将数据划分为若干个局部区域,并在每一个局部学习一个最大边界线性判别投影分类器。组合各局部分类器,实现全局非线性的投影与分类。i MMLDP模型利用贝叶斯框架联合建模,将聚类、投影及分类器进行联合学习,可以有效发掘数据的隐含结构信息,因而,可以较好地对非线性可分数据,尤其是具有多模分布特性数据进行分类。得益于非参数贝叶斯先验技术,可以有效避免模型选择问题,即局部区域划分数量。基于仿真数据集、公共数据集及雷达实测数据集验证了所提方法的有效性。 An infinite Max-Margin Linear Discriminant Projection (iMMLDP) model is developed to deal with the classification problem on multimodal distributed high-dimensional data. Different from global projection, iMMLDP divides the data into a set of local regions via Dirichlet Process (DP) mixture model and meanwhile learns a linear Max-Margin Linear Discriminant Projection (MMLDP) classifier in each local region. By assembling these local classifiers, a flexible nonlinear classifier is constructed. Under this framework, iMMLDP combines dimensionality reduction, clustering and supervised classification in a principled way, therefore, an underlying structure of the data could be uncovered. As a result, the model can handle the classification of data with global nonlinear structure, especially the data with multi-modally distributed structure. With the help of Bayesian nonparametric prior, the model selection problem (e.g. the number of local regions) can be avoided. The proposed model is implemented on synthesized and real-world data, including multi-modally distributed datasets and measured radar high range resolution profile (HRRP) data, to validate its efficiency and effectiveness.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第12期2795-2802,共8页 Journal of Electronics & Information Technology
基金 国家杰出青年科学基金(61525105) 国家自然科学基金(61201292 61322103 61372132) 全国优秀博士学位论文作者专项资金(FANEDD-201156) 陕西省自然科学基础研究计划(2016JQ6048) 航空科学基金(20142081009) 上海航天科技创新基金(SAST2015009) 航空电子系统射频综合仿真航空科技重点实验室基金~~
关键词 最大间隔线性判别投影 非参数贝叶斯 Dirichlet过程混合模型 Max-Margin Linear Discriminant Projection (MMLDP) Bayesian nonparametric Dirichlet Process Mixture (DPM) model
  • 相关文献

参考文献4

二级参考文献34

  • 1Du L, Liu H W, Wang P H, et al.. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. [EEE Transactions on Signal Processing, 2012, 60(7): 3546 3559.
  • 2Collober R, Bengio S, and Bengio Y. A parallel mixture of SVMs for very large scale problems[J]. Neural Computation, 2002, 14(5): 1105 1114.
  • 3Fu Z, Robles-Kelly A, and Zhou J. Mixing linear SVMs for nonlinear classification[J]. IEEE Transactions on Neural Networks, 2010, 21(12): 1963-1975.
  • 4Anoniak C E. Mixtures of Dirichlet process with applications to Bayesian nonparametric problems[J]. Annals of Statistics, 1974, 2(6): 1152-1174.
  • 5Blei D M and Jordan M I. Variational inference for Dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121-144.
  • 6Shahbaba B and Neal R. Nonlinear models using Dirichlet process mixtures[J]. The Journal of Machine Learning Research, 2009, 10(4): 1829-1850.
  • 7Zhu J, Chen N, and :King E P. Infinite SVM: a Dirichlet process mixture of large-margin kernel machines[C]. The 28th International Conference on Machine Learning (ICML-11), Belevue, WA, USA, 2011: 617-624.
  • 8Polson N G and Scott S L. Data augmentation for support vector machines[J]. Bayesian Analysis, 2011, 6(1): 1-24.
  • 9Zhu J, Chen N, Perkins H, et al.. Gibbs max-margin topic models with fast sampling algorithms[C]. The 30th International Conference on Machine Learning (ICML-13), Atlanta, USA, 2013: 124-132.
  • 10Ferguson T S. A Bayesian analysis of some nonparametric problems[J]. The Annals of Statistics, 1973, 1(2): 209-230.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部