期刊文献+

酶交联明胶水凝胶性能研究及仿生微流道制备 被引量:4

Properties of Enzymatically Crosslinked Gelatin and Fabrication of Bio-Microchannel
下载PDF
导出
摘要 针对当前水凝胶构建实质性功能器官存在制备血管网络困难的问题,采用了转谷氨酰胺酶(mTG酶)交联明胶构建明胶水凝胶圆形仿生微流道的方法。研究了明胶水凝胶的力学性能、成形性能及生物性能与明胶浓度的关系,提出了明胶水凝胶构建微流道结构的工艺条件,评价了微流道构建工艺的成型精度、力学性能和内皮化功能。结果表明:随着水凝胶浓度的提高,水凝胶的力学性能成线性增加,微结构的成型性能也逐步改善,但是浓度过高生物性能反而降低,明胶质量浓度为0.1g/mL的水凝胶综合性能相对较好,可用于构建圆形仿生微流道;采用的微流道成型工艺保持了原有水凝胶的力学性能,但是存在一定的成型误差,细胞在微流道内分布均匀,实现了微流道的内皮化。通过研究不同浓度的酶交联明胶水凝胶,制备的仿生微流道有望用于实质性功能器官的仿生再建。 A new strategy is adopted to construct the hydrogel microchannel with the enzymatically-crosslinked gelatin by evaluating the different concentration gelatin hydrogel,which aims to solve the difficulty of fabricating circular microchannel by soft hydrogel.The relationship of the gelatin properties(mechanical,forming and biological)with its concentration is revealed and discussed,and the molding process of gelatin hydrogel microchannel is proposed.The structural,mechanical and endothelialization properties of gelatin hydrogel microchannel are also studied.The experimental results indicate that with the increasing gelatin concentration,the mechanical property and microstructure replication property of the composite hydrogels are gradually improved,however,superior concentration causes lower biological performance.Hence,the hydrogel with 0.1 g/mL gelatin is chosen as the optimal composition to build circular microchannel. The approach for fabricating microchannel retains the original mechanical properties of the hydrogel,although certain error exists in the forming process from characterizing morphology and the dimension of the microchannel.Besides,the microchannel gelatin facilitates attaching and spreading of human umbilical endothelial cells(HUVECs)toform a uniform endothelialized layer around the channel surface.Following the evaluation of different concentrations of enzymatically crosslinked gelatin hydrogel, the biomimetic microchannel can be expected to apply to reconstruction of substantive functional organs.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第12期143-149,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51675416) 陕西省统筹项目(2015KTTSGY-04)
关键词 实质性功能器官 月胶 转谷氨酰胺酶 水凝胶 微流道 substantive functional organs gelatin mTG hydrogel microchannel
  • 相关文献

参考文献1

二级参考文献29

  • 1Kang L, Chung B G, Langer R, Khademhosseini A. Micro- fluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1-13.
  • 2Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrica- tion inside capillaries using multiphase laminar flow pat- terning. Science, 1999, 285, 83-85.
  • 3Wu W, Hansen C J, Arag6n A M, Geubelle P H, White S R, Lewis J A. Direct-write assembly of biomimetic microvas-cular networks for efficient fluid transport. Soft Matter, 2010, 6,739.
  • 4Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies tbr global public health. Nature, 2006, 442, 412-418.
  • 5Woias P. Micropumps--past, progress and future prospects. Sensors and Actuators B: Chemical, 2005, 105, 28-38.
  • 6Kim T, Cho Y H. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing. Lab On A Chip, 2011, 11, 1825-1830.
  • 7Lynn N S, Dandy D S. Passive microfluidic pumping using coupled capillary/evaporation effects. Lab On A Chip, 2009, 9, 3422 3429.
  • 8Osborn J L, Lutz B, Fu E, Kauffman P, Stevens D Y, Yager E Microfluidics without pumps: Reinventing the T-sensor and tt-filter in paper networks. Lab On A Chip, 2010, 10, 2659-2665.
  • 9Zimmermann M, Schmid H, Hunziker P, Delamarche E. Capillary pumps for autonomous capillary systems. Lab On AChip, 2007,7,119 125.
  • 10Bische[ L L, Young E W, Mader B microfluidic angiogenesis assay R, Beebe D J. Tubeless with three-dimensional endothelial-lined microvessels. Biomaterials, 2013, 34 471 1477.

共引文献2

同被引文献20

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部