期刊文献+

基于一种新的S型函数快速凸组合最小均方算法 被引量:3

A Fast Convex Combination Least Mean Square Algorithm Based on a New S Type Function
下载PDF
导出
摘要 为解决传统凸组合自适应滤波算法在联合参数迭代计算量大、算法收敛速度慢、跟踪性能差等问题,提出了一种基于一种新的S型函数快速凸组合最小均方(SCLMS)算法;该算法用一种新的S型函数,代替Sigmoid函数,在保证和CLMS算法相同稳态误差情况下,避免了指数运算,减少了计算量;同时也提高了收敛速度和信号的跟踪性能。通过独立高斯白噪声作为输入信号算法仿真、相关噪声作为输入信号算法仿真;以及非平稳环境下算法仿真;并对三种仿真结果进行了分析,验证了该算法性能可靠有效。 In order to solve the calculate in large quantity,slow convergence speed and tracking performance is poor in the joint parameter iteration in traditional convex combination of adaptive filtering algorithm. A new fast convex combination of LMS algorithmpro was posed based on type S function( SCLMS). Using a new S function of the algorithm,instead of Sigmoid in function,when the SCLMS steady-state error is same with CLMS algorithm,avoid the index operation,reduce the amount of computation,and improve the convergence speed and tracking performance of the signal. The independent Gauss white noise as input signal simulation algorithm,noise as input signal simulation algorithm,and non-stationary environment algorithm simulation,and three kinds of simulation results were analyzed and verified the performance of the algorithm is reliable and effective.
出处 《科学技术与工程》 北大核心 2017年第31期289-293,共5页 Science Technology and Engineering
基金 国家自然科学基金(51665006) 广西高校自然科学基金(2013YB172)资助
关键词 自适应滤波 LMS算法 CLMS算法 凸组合算法 SCLMS算法 adaptive filtering LMS algorithm CLMS algorithm convex combination algorithm SCLMS algorithm
  • 相关文献

参考文献2

二级参考文献16

  • 1王敏强,郑宝玉.一种新的可变步长LMS自适应滤波算法[J].信号处理,2004,20(6):613-617. 被引量:25
  • 2詹国强,吴正国.一种新的变步长LMS自适应滤波算法[J].海军工程大学学报,2006,18(2):109-112. 被引量:23
  • 3J Arcnas-Garcia, A R Figuciras-Vidal, A H Sayed. Steady State performance of convex combinations of adaptive filters [J]. IEEE Signal Processing (S1053-587X), 2005, 4(4): 33-36.
  • 4J Arenas-Garcia, A R Figueiras-Vidal, A H Sayed. Mean-square performance of a convex combination of two adaptive filters [J]. IEEE Signal Processing (S1053-587X), 2006, 54(3): 1078-1090.
  • 5E V Papoulis, T Stathaki. A normalized robust mixod norm adaptive algorithm for system identification [J]. IEEE Signal Processing (S 1053-587X), 2004, 1(11 ): 56-59.
  • 6B Widrow, J M Cool. A comparison of adaptive algorithms based on the methods of steepest descent and random search [J]. IEEE Antennasand and Propagation (S0018-926X), 1976, 24(5): 615-637.
  • 7S R Paulo Diniz. Adaptive filtering: algorithms and practical implementation (2E) [M]. The Netherlands: Kluwer Academic Publishers, 2004.
  • 8Simon Haykin. Adaptive filter theory (4E) [M]. The Netherlands: Kluwer Academic Publishers, 2003.
  • 9A H Sayed. Fundamental of adaptive filters [M]. The Netherlands: Kluwcr Academic Publishers, 2003.
  • 10Raymond H Kwong, Edward W Johnston. A Variable Step Size LMS Algorithm [J]. IEEE Signal Processing (S1053-587X), 1992, 40(7): 1633-1642.

共引文献28

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部