期刊文献+

基于聚类的非平衡K-NN分类方法

Imbalanced K-NN Classification Method Based on Clustering
下载PDF
导出
摘要 现实世界中存在大量非平衡分类问题,传统K-近邻(K-NN)分类方法采用近邻决策的原则,导致少数类样本在分类过程中难以识别。针对这个问题,提出一种基于聚类的非平衡K-NN分类方法(IKNN_C),该方法通过对已标记的多数类样本进行聚类,压缩多数类样本的规模,从而提高标记样本的平衡性,提高非平衡数据的分类性能。 In real world, there are many imbalanced classification problems, The traditional K-nearest neighbor (K-NN) classification method adopts the principle of nearest neighbor decision rule, and the important minority class samples are always classified wrongly. To solve this problem, this paper presents an imbalanced K-NN classification method based on clustering: (IKNNC). This method can compress the size of majority class size by clustering the majQrity class samples. Then it improves the balance of labeled samples and improves the classification performance of imbalanccd data.
作者 崔丽娜
出处 《现代计算机》 2017年第22期6-9,共4页 Modern Computer
关键词 非平衡分类 K-NN算法 聚类 平衡性 Imbalanced Classification K-NN Algorithm Clustering Balance
  • 相关文献

参考文献2

二级参考文献21

  • 1Manevitz L M, Yousef M, Cristianini N, et al. One-class SVMs for document classification [J]. Journal of Machine Learning Research, 2001, 2 : 139-154.
  • 2Yu H, Han J, Chang K. PEBL: Positive examples based learning for Web page classification using SVM [C]//Proc of the 8th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2002: 239-248.
  • 3Li X, Liu B, Ng S. Learning to identify unexpected instances in the test set [C]//Proc of the 20th IJCAI. San Francisco: Morgan Kaufmann, 2007:2802-2807.
  • 4Sha C, Xu Z, Wang X, et al. Directly identify unexpected instances in the test set by entropy maximization [C]//Proc of APWEB/WAIM 2009. Berlin: SPringer, 2009: 659-664.
  • 5Manning C D, Raghavan P, Schutze H. An Introduction to Information Retrieval [M]. Cambridge, Cambridge University Press, 2007: 117-119.
  • 6Maimon O, Rokach L. The Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2005:853-867.
  • 7Gyorfi L, Gyorfi Z, Vajda I. Bayesian decision with rejection [J]. Problems of Control and Information Theory, 1979, 8 (5) : 445-452.
  • 8McCallum A, Nigam K. A comparison of event models for naive Bayes text classification [C]//Proc of AAAI-98 Workshop on Learning for Text Categorization. Menlo Park, CA: AAAI, 1998:41-48.
  • 9Landwehr N, Hall M, Frank E. Logistic model trees [C]// Proc of the 14th European Conf on Machine Learning. Berlin: Springer, 2003:241-252.
  • 10Sumner M, Frank E, Hall M. Speeding up logistic model tree induction [C] //Proc of the 9th European Conf on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer, 2005:675-683.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部