期刊文献+

一种面向非平衡生物医学数据的自训练半监督方法

A Self-training Semi-supervised Method for imbalanced Biomedical Data Sets
下载PDF
导出
摘要 生物医学复杂关系提取已经成为文本挖掘领域的焦点,而用于训练预测模型的注释语料库高度非平衡,且大多是针对单个注释语料库训练的监督模型,极大地限制了系统性能。因此,提出一种显著空间SVM自训练半监督学习方法,通过平衡初始模型诱导未标签训练数据,将领域知识纳入事件提取模型,识别多数类子集,构建预测模型。通过设计实验评估证明了训练语料库的有效性。
出处 《大庆师范学院学报》 2017年第6期75-79,共5页 Journal of Daqing Normal University
基金 安徽省高校自然科学研究项目(KJ2015B023by)
  • 相关文献

参考文献5

二级参考文献53

  • 1Pitler E, Raghupathy M, Mehta H, et al.Easily identifiable discourse relations [R]. Philadelphia.. University of Penn- sylvania, 2008 : 884.
  • 2Zhou Z M,Lan M,Niu Z Y,et al.The effects of discourse connectives prediction on implicit discourse relation rec- ognition[C]//Proceedings of the llth Annual Meeting of the Special Interest Group on Discourse and Dialogue. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010 : 139-146.
  • 3Pitler E,Louis A,Nenkova A.Automatic sense prediction for implicit discourse relations in text[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudshurg, PA, USA: Association for Computational Linguistics, 2009 : 683-691.
  • 4Lin Z, Kan M Y, Ng H T. Recognizingimpl.icit discourse relations in the Penn Discourse Trcebank [C] // Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009:343-351.
  • 5Hernault H, Bollegala D, Ishizuka M. A semi-supervised approach to improve classification of infrequent discourse relations using feature vector extension[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA : Association for Computational Linguistics, 2010 : 399-409.
  • 6Hernault H, Bollegala D, Ishizuka M.Semi-supervised dis- course relation classification with structural learning[C] //Computational Linguistics and Intelligent Text Pro- cessing.Berlin Heidelberg : Springer, 2011 : 340-352.
  • 7Xu Y, Lan M, Lu Y, et al.Connective prediction using ma- chine learning for implicit discourse relation classification [C] // Neural Networks (IJCNN),the 2012 International Joint Conference on. New York : IEEE, 2012 : 1-8.
  • 8Park J, Cardie C. Improving implicit discourse relation recognition through feature set optimization[C] // Pro- ceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Stroudsburg, PA, USA: Association for Computational IAnguistics, 2012:108-112.
  • 9Klein D, Manning C D.Accurate unlexicalized parsing[C] //Proceedings of the 41st Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA : Asso- ciation for Computational Linguistics, 2003 : 423-430.
  • 10Pawel Mazur, Robert Dale. A rule based approach to temporal expression tagging [C] //Proceeding of the International Mul- tieonference on Computer Science and Information Teehnology, 2007.. 293-303.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部