期刊文献+

球形MnO/GO复合材料制备及锂离子电池性能研究

Synthesis and lithium ion battery performance of MnO/GO composites
下载PDF
导出
摘要 利用简单的溶剂热法,以四水合乙酸锰为锰源、尿素为沉淀剂,在氧化石墨烯(GO)存在条件下,一步制得了球形碳酸锰与GO组成的前驱物。该前驱物在氮气氛围中于500℃煅烧4 h,成功转化为由一氧化锰(Mn O)微球与GO组成的复合材料Mn O/GO。利用X射线衍射仪(XRD)和场发射扫描电镜(FESEM)分别对材料的物相和形貌进行了表征,并对材料的锂电性能进行了研究。结果表明:复合材料首次放电比容量为1 326.8 m A·h/g(0.1 A/g,0.01~3.00 V);在电流密度为0.2 A/g条件下,循环100次后材料的放电比容量仍能保持在626.5 m A·h/g。复合材料的电化学性能较单一Mn O微球有显著提高。 The composite precursors consisting of spherical MnCO3 particles and graphene oxide(GO) were successfully synthesized with Mn Ac2·4 H2O as Mn^(2+) resource in the presence of urea and graphene oxide(GO) by simple solvothermal method.After calcined at 500 ℃ for 4 h in N2 subsequently,the precursors converted into Mn O/GO composites on a large scale.The composition and morphology of the materials were characterized with XRD and field emission scanning electron microscope(FESEM).The electrochemical energy storage properties of as-prepared Mn O/GO composites were also investigated.It was found that the specific capacity of Mn O/GO composites reached 1 326.8 m A·h/g at 0.1 A/g(0.01 ~3.00 V),based on the calculation from the first discharge curve. In addition,the specific capacity of the materials still maintained at 626.5 m A·h/g,after cycling for 100 times at 0.2 A/g.Compared with pristine Mn O microspheres,the electrochemical properties of as-prepared Mn O/GO composites showed enhanced electrochemical performances.
出处 《无机盐工业》 CAS 北大核心 2017年第12期42-45,共4页 Inorganic Chemicals Industry
关键词 一氧化锰 锂离子电池 负极材料 石墨烯 复合材料 manganese monoxide l ithium ion battery anode material graphene composite materials
  • 相关文献

参考文献2

二级参考文献122

  • 1Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162-163.
  • 2Iijima S. Nature, 1991, 354: 56-58.
  • 3Ugarte D. Nature, 1992, 359: 707-709.
  • 4Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103: 7743-7746.
  • 5Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669.
  • 6Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25: 1504-1508.
  • 7Chandra S, Bag S, Bhar R, Pramanik P. J. Nanopart. Res., 2011, 13: 2769-2777.
  • 8Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D. Carbon, 2005, 43: 153-160.
  • 9Zhao H Y, Xu X X, Zhang J X, Zheng Y F. Bioelectrochem., 2010, 78: 124-129.
  • 10McKnight T E, Melechko A V, Guillorn M A, Merkulov V I, Doktycz M J, Culbertson C T, Jacobson S C, Lowndes D H, Simpson M L. J. Phys. Chem. B., 2003, 107: 10722-10728.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部