期刊文献+

关键设施防护情景下震后应急物资配送的OLRP 被引量:4

Open Location-routing Problem of Relief Distribution in Post-earthquake Under Protection of Critical Facilities
原文传递
导出
摘要 震区应急物流设施容易被余震、泥石流等不确定因素破坏从而失效,所以震后应急物资配送应该考虑设施防护。综合考虑震后应急路网部分损毁、多方式配送、时间窗限制、部分设施被破坏、应急设施保护资源有限等特性,构建一个关键设施防护情景下震后应急物资配送开放式定位-路径问题的"防护-破坏-优化"三层主从对策模型,并根据模型特点设计一种免疫遗传算法予以求解。最后,采用汶川地震之后第一天的应急物资配送案例验证本文方法的可行性与有效性。 Emergency logistics facilities ties, e.g. strong aftershock, and mud - rock in earthquake areas can easily be destroyed by many uncertain- flow. Relief distribution shall consider facilities protection in the post -earthquake. By considering partial damage of emergency network, multi - model distribution, time win- dow constraints, partial damaged facilities, and limited protection resources, a tri -level hierarchical decision model of "protection - destroying - optimization" is proposed for the open location - routing problem of relief distribution under protection of critical facilities. An immune genetic algorithm is put forward to solve the mod- el. Finally, both the feasibility and effectiveness of the model and the algorithm have been demonstrated by re- lief distribution examples during the first day after the Wenchuan earthquake occurred.
作者 刘长石 罗亮
出处 《湖南科技大学学报(社会科学版)》 CSSCI 北大核心 2017年第6期66-72,共7页 Journal of Hunan University of Science and Technology(Social Science Edition)
基金 国家社会科学基金一般项目(17BJL091) 湖南省社会科学基金一般项目(13YBB124)
关键词 地震 设施防护 应急物资配送 开放式定位-路径问题 earthquake facility protection relief distribution open location - routing problem
  • 相关文献

参考文献4

二级参考文献51

  • 1马云峰,杨超,张敏,郝春艳.基于时间满意的最大覆盖选址问题[J].中国管理科学,2006,14(2):45-51. 被引量:79
  • 2孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 3方磊.基于偏好DEA的应急系统选址模型研究[J].系统工程理论与实践,2006,26(8):116-122. 被引量:36
  • 4李庆华,杨世达,阮幼林.基于水平集的遗传算法优化的改进[J].计算机研究与发展,2006,43(9):1624-1629. 被引量:12
  • 5Branke J. Evolutionary optimization in dynamic environments [M]. Boston: Kluwer Academic Publishers, 2002.
  • 6Branke J, Kaubler T, Schmidt C. A multi-population approach to dynamic optimization problems [C]. Adaptive Computing in Design and Manufacturing. Heidelberg: Springer, 2000.
  • 7Branke J. Memory enhanced evolutionary algorithms for changing optimization problems[C]. Proc of IEEE Int Congress on Evolutionary Computation. Piscataway:IEEE Servicee Center, 1999: 1875-1882.
  • 8Yang S. Non-stationary problem optimization using the primal-dual genetic algorithm[C]. Proc of the 2003 Congress on Evolutionary Computing. Canberra, 2003, (3) : 2246-2253.
  • 9Gaspar A, Collard P. From GAs to artificial immune systems: Improving adaptation in time dependent optimization [C]. Proc of the 1999 Congress on Evolutionary Computing. Washington DC, 1999, (3): 1859-1866.
  • 10Gaspar A , Collard P. Two models of immunization for time dependent optimization[C]. Proc of the 2000 IEEE Int Conf on SMC. Washington DC, 2000: 189-196.

共引文献126

同被引文献115

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部