期刊文献+

一种改进的永磁同步电动机参数在线辨识方法 被引量:5

Improved Method of On-line PMSM Parameters Identification
下载PDF
导出
摘要 本文提出了一种永磁同步电动机参数在线辨识的新方法。通过对永磁同步电动机在d-q坐标系下,标准最小二乘法形式的参数辨识模型的推导,利用带遗忘因子最小二乘法(FFRLS)对电动机定子电阻值和交直轴电感值进行在线辨识,借助以上辨识结果,采用模型参考自适应方法(MRAS)再辨识出电动机的永磁磁链。同时应用基于Popov超稳定性理论设计的PI自适应律,实现各种工况下电动机的永磁磁链在线辨识。以一台0.75kW永磁同步电动机为例进行了仿真与实验研究,仿真结果显示,该方法具有计算量较小、准确度较高且具有较佳的动态跟踪辨识特性。 A new method of on-line parameters identification of Permanent Magnet Synchronous Motor(PMSM) is proposed in this paper. The parameter identification model of PMSM in the d-q coordinate system is deduced according to the standard form of least squares method. The Forgetting Factor Recursive Least Square(FFRLS) is used to identify stator resistance value and direct axis and quadrature axis inductance value online. Based on the above identification results, the Model Reference Adaptive System(MRAS) is used to identify the permanent magnet flux linkage of the motor. The PI adaptive law based on design of Popov hyperstability theory is used to realize the on-line identification of permanent magnet flux linkage of the motor under various operating conditions. Finally, the simulation and experiment are developed with a 0.75 kW PMSM as an example. The simulation results show that the proposed method in this paper has the advantages of less computation, high accuracy and better dynamic tracking performance.
作者 石有计
出处 《电气技术》 2017年第11期91-95,共5页 Electrical Engineering
关键词 永磁同步电动机 在线辨识 最小二乘法 模型参考自适应法 PMSM on-line identification least squares method MRAS
  • 相关文献

参考文献7

二级参考文献71

  • 1曾鑫,杨浩,罗建.基于最小二乘法的变压器三相漏感参数的辨识算法[J].变压器,2010,47(10):22-25. 被引量:3
  • 2王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155. 被引量:139
  • 3李富强,刘秀成,李东霞,唐起超,王赞基.基于虚拟磁通与差动电流特性识别变压器励磁涌流[J].电力系统自动化,2004,28(23):45-49. 被引量:8
  • 4韩正庆,高仕斌,李群湛.基于变压器模型的新型变压器保护原理和判据[J].电网技术,2005,29(5):67-71. 被引量:21
  • 5M. A. Rahman, M. A. Hoque. On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors. IEEE Transactions on Energy Conversion, vol. 13, no. 4, pp. 311-318, 1998.
  • 6T. Liu, M. Elbuluk, I. Husain. Sensorless adaptive neural network control of permanent magnet synchronous motors. In Proceedings of International Conference on Electric Machines and Drives, IEEE, pp. 287-289, 1999.
  • 7S. Bolognani, L. Tubiana, M. Zigliotto. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1741-1747, 2003.
  • 8S. Bolognani, M. Zigliotto, K. Unterkofler. On-line parameter commissioning in sensorless PMSM drives. In Proceedings of IEEE International Symposium on Industrial Electronics, Cuimaraes, Portugal, vol. 2, pp. 480-484, 1997.
  • 9Z. Q. Zhu, X. Zhu, P. D. Sun, D. Howe. Estimation of winding resistance and PM flux-linkage in brushless AC machines by reduced-order extended Kalman filter. In Proceedings of IEEE International Conference on Networking, Sensing and Control, IEEE, London, UK, pp. 740-745, 2007.
  • 10H. Tsaknakis, M. Athans. Tracking maneuvering targets using H∞ filters. In Proceedings of the American Control Conference, IEEE, Baltimore, USA, voh 2, pp. 1796-1803, 1994.

共引文献148

同被引文献57

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部