期刊文献+

维吾尔语名词短语待消解项识别 被引量:1

Anaphoricity Determination of Uyghur Noun Phrases
下载PDF
导出
摘要 针对维吾尔语名词短语待消解项识别任务,该文提出一种利用栈式非负约束自编码器(Stacked Nonnegative Constrained Autoencoder,SNCAE)完成基于语义特征的待消解项识别方法。为了提高自动编码器隐藏层激活度的稀疏性和重构数据的质量,利用NCAE非负约束算法,为连接权值施加非负性约束。通过分析维吾尔语名词短语语言指代现象,提取出15个特征,利用SNCAE提取出深层语义特征,引入Softmax分类器,进而完成待消解项识别任务。该方法在维吾尔语名词短语待消解项识别中,正例准确率和负例准确率分别比SVM高出8.259%和4.158%,比栈式自编码(SAE)高出1.884%和1.590%,表明基于SNCAE的维吾尔语名词短语待消解项识别方法比SVM和SAE更适合维吾尔文的待消解项识别任务。 Focusedon Uyghur noun phrase coreference identification task,this paper proposed a Stacked Nonnegative Constrained Autoencoder(SNCAE)for anaphoricity determination based on semantic feature.Through the analysis of Uyghur noun phrase language phenomenon,15 kinds of semantic features are extracted,and then input into SNCAE to extract the deep semantic features.Finally,the Softmax classifier is used to complete the recognition task.Compared with Support Vector Machine(SVM),the positive accuracy and negative accurate increased by 8.259%and 4.158%,respectively,and increased by 1.884% and 1.590%,respectively,than the Stacked Autoencoder(SAE).
出处 《中文信息学报》 CSCD 北大核心 2017年第5期92-98,113,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61563051 61662074) 国家自然科学基金(61262064) 国家自然科学基金(61331011) 自治区科技人才培养项目(QN2016YX0051)
关键词 待消解项识别 维吾尔语 非负约束算法 栈式自编码 支持向量机 anaphoricity determination Uyghur NCAE SAE SVM
  • 相关文献

参考文献8

二级参考文献100

  • 1王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 2李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 3周俊生,黄书剑,陈家骏,曲维光.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报,2007,21(2):77-82. 被引量:19
  • 4陈凯江 刘秉伟 黄萱菁 等.基于隐马尔可夫模型的实体名识别[A]..见:863计划智能计算机主题学术会议论文集[C].北京:清华大学出版社,2001.443~453.
  • 5N A Chinichor. Overview of MUC-7/MET-2. In: Proc of the 7th Message Understanding Cord (MUC-7). San Francisco: Morgan Kaufmann Publishers, 1998.
  • 6C Cardie, K Wagstaff. Noun phrase coreference as clustering. In:Proc of the Joint Cod on Empirical Methods in NLP and Very Large Corpora. Maryland: University of Maryland, USA, 1999.82~ 89.
  • 7W M Soon, H T Ng, C Y Lim. Corpus-based learning for noun phrase oonference resolution. In: Proc of the Joint Conf on Empirical Methods in NLP and Very Large Corpora. Maryland: University of Maryland, USA, 1999. 285~291.
  • 8R Mitkov. Anaphora resolution: The state of the art. Proc of the COLING'98/ACL'98, Wolverhampton, 1999.
  • 9J C Reynar, A Ratnaparkhi. A maximum entropy approach to identifying sentence boundaries. In: The 5th Cord on Applied Natural Language Processing. San Francisco: Morgan Kaufmann Publishers, 1997.
  • 10A Ratnaaparkhi. A maximum entropy part-of-speech tagger. The Empirical Methods in Natural Language Processing Conf, PA,USA, 1996.

共引文献114

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部