期刊文献+

考虑风热耦合作用特大型冷却塔内吸力及流场作用机理研究 被引量:1

RESEARCH ON THE INTERNAL SUCTION AND FLOW FIELD MECHANISM FOR SUPER-LARGE COOLING TOWERS UNDER WIND-THERMAL COUPLING
原文传递
导出
摘要 已有关于冷却塔内吸力取值的研究均忽略了周边散热器产生的热源影响,以国内在建世界最高220 m特大型间接空冷塔为对象,基于计算流体动力学方法对风热耦合作用下的塔筒内部流场进行数值模拟。在此基础上,对比分析了考虑风热耦合效应特大型冷却塔内表面风荷载的三维效应,归纳总结了内压系数沿子午向和环向的分布规律,探讨了考虑温度场后塔内流场特性、压力系数、阻力系数及风阻的差异及产生原因,最后给出了风热耦合作用下特大型冷却塔内吸力的取值建议。结果表明:考虑风热耦合作用后冷却塔内压系数取值增大,同时阻力系数取值及进出风口压差增大。研究建议此类特大型冷却塔在真实风热耦合环境下内压系数取为-0.43。 The effects of heat produced by radiators were ignored in existing research of internal suctions of large cooling towers. The world's tallest reinforced concrete cooling tower with a height of 220 m which is being built in China was taken as the research object. Based on the computational fluid dynamics method, the internal flow field of the tower was simulated under wind-thermal coupling. On the basis of the numerical simulation, three-dimensional effects of the inner surface wind load for super large cooling towers were analyzed, and the circumferential and meridian distribution laws of the internal pressure were summarized. The difference of flow field characteristics, pressure coefficients, drag coefficients and wind resistance after considering the temperature field was also analyzed. Finally, values of the internal pressure coefficients for super large towers were recommended. The results show that the internal pressure coefficient is increased after considering the action of wind-thermal coupling, meanwhile the drag coefficient and pressure differential between the inlet and outlet are increased. It is advised to take the internal pressure coefficient as -0.43 for such super large cooling towers under true wind-thermal coupling conditions.
作者 余玮 柯世堂
出处 《工程力学》 EI CSCD 北大核心 2017年第12期112-119,142,共9页 Engineering Mechanics
基金 江苏省优秀青年基金项目(BK20160083) 国家自然科学基金项目(51208254) 博士后科学基金项目(2013M530255 1202006B)
关键词 特大型冷却塔 风热耦合作用 数值模拟 内吸力 流场特性 super large cooling tower action of wind-thermal coupling numerical simulation internal pressure coefficient flow field characteristics
  • 相关文献

参考文献7

二级参考文献84

  • 1武际可.大型冷却塔结构分析的回顾与展望[J].力学与实践,1996,18(6):1-5. 被引量:53
  • 2沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟[J].浙江大学学报(工学版),2007,41(6):1017-1022. 被引量:29
  • 3GB/T50102-2003,工业循环水冷却设计规范[S].北京:中国计划出版社.2003.
  • 4中华人民共和国建设部.GB/T50102-2003工业循环水冷却设计规范[S].北京:中国计划出版社,2003.
  • 5SUN T F, GU Z F. Interference between wind loading on group of structures [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54- 55:213 - 225.
  • 6BASU P K, GOULD P L. Cooling towers using measured wind data[ J]. Journal of the Structural Division, ASCE, 1980, 106($33)-579-599.
  • 7SUN T F, ZHOU L M. Wind pressure distribution around a ribless hyperbolic cooling tower[ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14:181-192.
  • 8KASPERSKI M, NIEMANN H J. On the correlation of dynamic wind loads and structural response of naturaldraught cooling towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 30 : 67 - 75.
  • 9Fluent Inc. Fluent help documentation [ M ]. Pennsylvania: Fluent Inc, 2003.
  • 10工业循环水冷却没计规范(GB/T50102-2003)[S].北京:中国计划出版社,2003.

共引文献53

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部