期刊文献+

n维椭球体上含参数的加权重积分不等式

Inequalities for a Weight Multiple Integral with Parameters on an N-dimensional Ellipsoid Ball
下载PDF
导出
摘要 利用多元函数的Taylor公式,对定义在n维椭球体上的m+1阶偏导数具有上界和下界的n元函数f(x)建立了含参数的加权重积分不等式.该不等式也是文[1-2]的一种推广,并给出了应用. By using the Taylor' s formula of muhivariate functions, the weight multiple integral inequality with param- eterwere established for the n element function f(x) with upper and lower bounds on the m + 1 order partial derivatives defined on n dimensional ellipsoid ball.This inequality is also a generalization of [1-2] and its applications is given.
作者 孙燕 杨海涛
出处 《内蒙古民族大学学报(自然科学版)》 2017年第4期280-285,共6页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 国家自然科学基金资助项目(11361038 11561052)
关键词 n维椭球体 n重积分 加权重积分不等式 N-dimensional ellipsoid ball N-multiple integral Weight multiple integral inequality
  • 相关文献

参考文献5

二级参考文献35

  • 1华东师范大学数学系.数学分析[M].北京:高等教育出版社,1981.
  • 2K S K Iyengar.Note on an Inequality[J].Math Student,1938,6:75-76.
  • 3Feng Qi ,Zong-Li, Qiao Yang, Generalizations and Refinements of Hermite-Hadamard' s Inequality [J]. Rocky Mountain Journal of Mathematics, 2005,35 ( 1 ) : 235-251.
  • 4Feng Qi.Inequalities for a multiple integral[J].Acta Math.Hungar, 1999,84(1-2) : 19-26.
  • 5费定晖,周学圣编演.吉米多维奇数学分析习题精选精解[M].济南:山东科学技术出版社,2007.
  • 6KAPLAN W.Close-to-convex schlicht functions[J].The Michigan Mathematical Journal,1952,1(2):169-185.
  • 7GAO C,ZHOU S.On a class of analytic functions related to the starlike functions[J].Kyungpook mathematical journal,2005,45(1):123-130.
  • 8KOWALCZYK J,LES'-BOMBA E.On a subclass of close-to-convex functions[J].Applied Mathematics Letters,2010,23(10):1147-1151.
  • 9MEHROK B S,SINGH G.A subclass of close-to-convex functions[J].International Journal of Mathematical Analysis,2010,4:1319-1327.
  • 10XU Q H,SRIVASTAVA H M,LI Z.A certain subclass of analytic and close-to-convex functions[J].Applied Mathematics Letters,2011,24(3):396-401.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部