期刊文献+

基于交叉Gram矩阵的双侧H_2最优模型降阶方法

Model order reduction of two-sided H_2 optimality based on the cross Gramian
下载PDF
导出
摘要 针对单输入单输出(SISO)线性时不变系统,提出了Grassmann流形上基于交叉Gram矩阵的双侧H2最优模型降阶方法。首先,将误差系统的H2范数通过交叉Gram矩阵表示,并且把它看成关于变换矩阵的代价函数。其次,引入Grassmann流形,将代价函数看作是定义在Grassmann流形上的非负实值函数。然后,在Grassmann流形上进行线性搜索,寻找使得代价函数尽可能小的一组变换矩阵。运用此方法对大规模SISO线性时不变系统进行降阶,可以得到精度较高的降阶系统。最后,数值算例验证了该算法的近似效果。 Aiming at the single input and single output (SISO) linear time-invariant system, we pro- pose a two-sided H2 optimal model order reduction method based on the cross Gramian and Grassmann manifold. Firstly, the H2 norm of the error system is expressed by the cross Gramian, which is regarded as the cost function of transformation matrices. Secondly, by introducing the Grassrnann manifold, the cost function is viewed as a nonnegative real function defined on the Grassmann manifold. Thirdly, we perform the linear-search method on the Grassmann manifold to seek a couple of transformation matrices, which makes the cost function as small as possible. We apply this method to an SISO linear time-in- variant system and obtain a more accurate reduced order system. Numerical examples verify the effective approximation of the proposed method.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第12期2203-2209,共7页 Computer Engineering & Science
基金 国家自然科学基金(11371287 61663043)
关键词 模型降阶 Hz最优 交叉Gram矩阵 GRASSMANN流形 model order reduction H2 optimality cross gramian matrix Grassmann manifold
  • 相关文献

参考文献3

二级参考文献27

  • 1刘志臻,李东旭.弹性-粘弹性复合结构的Krylov子空间模型降阶方法[J].振动与冲击,2007,26(6):96-99. 被引量:2
  • 2刘宝.弹性飞机的建模与控制研究[D].西安西北工业大学,2008.
  • 3Schmidt.D K,Raney.D L.Modeling and Simulation of Flexible Flight Vehicles [J].Journal of Guidance,Control and Dynamics,2001,24(3): 225-235.
  • 4Xiao Hong Li,Ramesh,K.A,Application of Reduced-Order-Models to Robust Control of the Dynamics of a Flexible Aircraft [R].AIAA-2003-5504,2003.
  • 5刘世民.弹性飞机模型降阶与控制律设计 [D].西安:西北工业大学,2010.
  • 6李爱军,章卫国,刘世民 等.基于降阶模型的弹性飞行器QFT控制设计与仿真 [C]//中国航空学会.第三届中国导航、制导与控制学术会议论文集.北京:航空工业出版社,2009.396-400.
  • 7Chen B S,Cheng Y M.A genetic approach to mixed optimal PID controller [J].IEEE Control System Magazine,1995,15(5): 51-60.
  • 8Renato A K,Joost P R.Design of optimal disturbance rejection PID controllers using genetic algorithm [J].IEEE Trans on Evolutionary Computation,2001,5(1):78-82.
  • 9Ho S J,Ho S Y,Hung M H et al.Designing structure-specified mixed optimal controllers using an intelligent genetic algorithm IGA [J].IEEE Trans on Control Systems Technology,2005,13(6):1119-1124.
  • 10Storn R,PriceK.Differential evolution:A simple and efficient heuristic for global optimization over continuous spaces [J].Journal of Global Optimization,1997,11(4):341-359.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部