期刊文献+

机械合金化制备Al-Sn合金及其摩擦性能研究

Preparation and Tribological Properties of Al-Sn Alloy by Mechanical Alloying
原文传递
导出
摘要 采用机械合金化和粉末烧结的方法制备了纳米细晶/粗晶Al-Sn合金,研究了粗晶含量对合金微观形貌、摩擦形貌和耐磨性能的影响,探讨了Al-12Sn合金的磨损机制及影响因素。结果表明,机械合金化得到的双相双尺度Al-12Sn合金,在不同载荷下的摩擦系数要高于未添加粗晶的纯纳米晶Al-12Sn合金,但是低于纯粗晶Al-12Sn合金;当粗晶Al-12Sn粉末比例为30%时,烧结Al-12Sn合金具有最佳的抗摩擦磨损性能,其耐磨性能高于纯纳米晶和纯粗晶Al-12Sn合金,提高幅度分别约为1.5倍和2倍;随着粗晶Al-12Sn粉末比例的提高,合金的磨损机制从局部剥落演变为大面积摩擦层的剥落,并且摩擦表面的氧化摩擦层的数量不断降低。 Fine nanocrystalline/coarse grain Al-Sn alloys were prepared by mechanical alloying and powder sintering. The effect of coarse grain content on the microstructure, friction morphology and wear resistance of the alloy was investigated,and the wear mechanism and influencing factors of Al-12 Sn alloy were discussed. The results show that the friction coefficient of the dual-phase dual-scale Al-12 Sn alloy obtained by mechanical alloying under different loads is higher than that of pure nanocrystalline Al-12 Sn alloy without adding coarse grains, but lower than that of pure coarse crystalline Al-12 Sn alloy. When the coarse Al-12 Sn powder ratio is 30%, Al-12 Sn alloy presents the best friction and wear resistance.The wear resistance is much higher than that of pure nanocrystalline and pure coarse crystalline Al-12 Sn alloy, and the range of improvement is about 1.5 and 2 times, respectively. With the increase of the proportion of coarse Al-12 Sn powder,the wear mechanism of alloy changes from local spalling to spalling of large area of friction layer, and the number of oxide friction layer on the friction surface decreases continuously.
出处 《铸造技术》 北大核心 2017年第12期2832-2835,共4页 Foundry Technology
关键词 机械合金化 Al-12Sn 纳米晶 粗晶 耐磨性能 mechanical alloying Al-12Sn nanocrystalline coarse grain wear resistance
  • 相关文献

参考文献5

二级参考文献60

  • 1曾美琴,戴乐阳,王涛,王辉,李元元,朱敏.与钢背轧制复合的纳米复合Al-Pb-Cu合金的组织及摩擦性能[J].中国有色金属学报,2005,15(1):55-60. 被引量:6
  • 2STUCZYNSKI T. Metallurgical problems associated with the production of aluminium-tin alloys[J]. Materials and Design, 1997,18(4/6):369-372.
  • 3PATHAK J P, MOHAN S. Tribologieal behaviour of conventional Al-Sn and equivalent Al-Pb alloys under lubrication[J]. Bulletin of Materials Science, 2003,26 (3): 315-320.
  • 4KIM W T, ZHANG D L, CANTOR B. Microstructure of rapidly solidified aluminium-based immiscible alloys[J]. Materials Science and Engineering A, 1991,134: 1133-1138.
  • 5BANGERT H, EISENMENGER-SITTNER C, BERGAUER A. Deposition and structural properties of two-component metal coatings for tribological applications [J]. Surface and Coatings Technology, 1996,80(1/2): 162-170.
  • 6NOSKOVA N I, VIL'DANOVA N F, FILIPPOV Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanoerystalline alloys[J]. Physics of Metals and Metallography, 2006,102(6) : 646-651.
  • 7DIXON C F, SKELLY H M. Properties of aliminium-tin alloys produced by powder metallurgy[J]. Powder Metallurgy, 1973,16(32) : 366-373.
  • 8ZHU M, GAO Y, CHUNG C Y, et al. Improvement of the wear behaviour of Al-Pb alloys by mechanical alloying [J]. Wear, 2000,242(1): 47-53.
  • 9SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001,46 : 1-184.
  • 10LANGORD J I. A rapid method for analysing the breadths of diffraction and spectral lines using the Vogit function[J]. Journal of Applied Crystallography, 1978,11 : 10-14.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部