期刊文献+

基于低冗余度曲波变换的三维地震信号处理

Three-dimensional Seismic Denoising Based on Low Redundancy Curvelet Transform
下载PDF
导出
摘要 地震信号的插值和去噪问题是地震信号处理的重要研究内容,基于稀疏变换的方法将地震信号在变换域中稀疏表示,根据信号和噪声在变换域的不同表现采用阈值法实现插值和去噪.介绍了一种低冗余度三维曲波变换,并将其用于地震信号的插值和去噪.数值结果表明,该变换冗余度低,在保证曲波变换对地震信号处理有较好的数值效果的同时,将计算速度提高了4倍左右. Contamination of seismic signal with noise is one of the main challenges during seismic data processing.Based on sparse transform method,the seismic signals are sparse expressed in the transform domain.According to the different performance of signal and noise in the transform domain,threshold method is used to realize interpolation and denoising.A low redundancy 3 D curvelet transform is introduced,and it is applied to interpolation and denoising of seismic signals.Numerical results show that the conversion is low redundancy,and the calculation speed is increased about four times when the curvelet transform has good numerical effect on seismic signal processing.
作者 胡之英
机构地区 西安翻译学院
出处 《宁夏大学学报(自然科学版)》 CAS 2017年第4期347-352,共6页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(41204075)
关键词 CURVELET变换 去噪 低冗余度 稀疏优化 curvelet transform denoising low redundancy rarefaction optimization
  • 相关文献

参考文献3

二级参考文献17

  • 1WANG YanFei,MA ShiQian,YANG Hua,WANG JinDi,LI XiaoWen.On the effective inversion by imposing a priori information for retrieval of land surface parameters[J].Science China Earth Sciences,2009,52(4):540-549. 被引量:4
  • 2张华,陈小宏.基于jitter采样和曲波变换的三维地震数据重建[J].地球物理学报,2013,56(5):1637-1649. 被引量:42
  • 3Broadhead, M., 2008, The impact of random noise on seismic wavelet estimation: The Leading Edge, 27(2), 226-230.
  • 4Candes, E., and Donoho, D., 2002, New tight frames of curvelets and optimal representations of objects with smooth singularities: Technical Report, Stanford University.
  • 5Deng, C. Z., 2008, Research on image sparse representation theory and its applications: PhD Thesis, Huazhong University of Science and Technology.
  • 6Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Trans. Image Process, 15(12), 3736-3745.
  • 7Herrmann, F., and Hennenfent, G., 2008, Non-parametricseismic data recovery with curvelet frames: Geophys. J.Int., 173, 233-248.
  • 8Meyer, F. G., 1999, Fast compression of seismic data with local trigonometric bases, in Aldroubi, A., Laine, A., and Unser, M., Eds., Wavelet VII: Proc. SPIE 3813, 648-658.
  • 9Protter, M., and Elad, M., 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans. Image Process, 18(1), 27-35.
  • 10Shan, H., Ma, J. W., and Yang, H. Z., 2009, Comparisons of wavelets, contourlets and curvelets in seismic denoising: Journal of Applied Geophysics, 69, 103-115.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部