期刊文献+

医院特定患者信息资源快速检索仿真研究 被引量:3

Simulation Research on Information Retrieval of Hospital Specific Patient Information
下载PDF
导出
摘要 对医院特定患者的信息资源进行快速检索,能够有效提高医务人员的工作效率。对特定患者信息资源的检索,需要调整对信息特征项权重值,计算特征项向量梯度,完成患者信息的检索。传统方法捕获信息资源词项间的依赖关系,查询关联度,但忽略了特征项权重值的调整,导致检索精度低。提出基于动态自适应特征权重计算的信息资源快速检索方法。从医院患者信息资源库中提取目标信息与查询关键词间的语义路径,计算各语义路径权重,依据权重计算特定患者信息与各关键词间语义相关性。考虑信息特征项出现频率及所属文档在训练集中数量,对特征项权重值进行调整,通过考察特征项的分散度和向量梯度差,完成医院特定患者信息资源的快速检索。实验结果表明,该方法有效提高了特定患者信息检索精度,缩短了检索响应时间。 A quick retrieval method of information resources based on weight calculation of dynamic self - adaptive feature is proposed. The semantic path between target information and query keywords is extracted from information repository of hospital patients, and the weight of each semantic path is calculated. The semantic correlation between specific patient information and keywords is calculated according to weights. By considering the frequency of characteristic item of information and the number of document belong to the training set, the weight of characteristic item is adjusted. Through investigating the divergence of characteristic item and the vector gradient difference, the quick retrieval of specific information resource of hospital patient is completed. Simulation results show that this method can improve the precision of information retrieval for specific patient, which shortens the retrieval response time.
机构地区 南京中医药大学
出处 《计算机仿真》 北大核心 2017年第12期389-392,共4页 Computer Simulation
关键词 医院 特定患者 信息资源 快速检索 Hospital Specific patient Information resources Quick retrieval
  • 相关文献

参考文献10

二级参考文献96

  • 1张俊林,孙乐,孙玉芳.基于主题语言模型的中文信息检索系统研究[J].中文信息学报,2005,19(3):14-20. 被引量:4
  • 2方清华.信息检索过程模型的认知分析[J].情报杂志,2007,26(1):54-56. 被引量:10
  • 3司孟月.如何克服营销管理中的“隧道视野”[J].商场现代化,2007(11Z):76-77. 被引量:4
  • 4A.Micarilli, F.Gaspaetti, F.Sciarrone, et al. Personalized Search on the World Wide Web [ C ]. Lecture Notes in Computer Science, 2007 : 225 - 230.
  • 5F. Paul M. Speretta and S. Ganch. Personalized search based on user search histories [C]. Proceedings of the IEEE/WIC/ACM Internation- al Conference on Web Intelligence, 2005: 622- 628.
  • 6Niu Shuzi,Guo Jiafeng,Lan Yanyan,et al.Top-k Learning to Rank:Labeling,Ranking and Evaluation[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2012:751-760.
  • 7Wang Lidan,Bennett P N,Collins-Thompson K.Robust Ranking Models via Risk-sensitive Optimization[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2012:761-770.
  • 8Lai Hanjiang,Pan Yan,Liu Cong,et al.Sparse Learningto-rank via an Efficient Primal-dual Algorithm[J].IEEE Transactions on Computers,2013,62(6):1221-1233.
  • 9Macdonald C,Santos R L T,Ounis I.The Whens and How s of Learning to Rank for Web Search[J].Information Retrieval,2013,16(5):584-628.
  • 10Rigutini L,Papini T,Maggini M,et al.Sort Net:Learning to Rank by a Neural Preference Function[J].IEEE Transactions on Neural Networks,2011,22(9):1368-1380.

共引文献70

同被引文献30

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部