期刊文献+

烟花算法优化的软子空间MR图像聚类算法 被引量:12

Soft Subspace Algorithm for MR Image Clustering Based on Fireworks Optimization Algorithm
下载PDF
导出
摘要 现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割. The existing soft subspace clustering algorithm is susceptible to random noise when MR images are segmented,and it is easy to fall into local optimum due to the choice of the initial clustering centers,which leads to unsatisfactory segmentation results.To solve these problems,this paper proposes a soft subspace algorithm for MR image clustering based on fireworks algorithm.Firstly,a new objective function with boundary constraints and noise clustering is designed to overcome the shortcomings of the existing algorithms that are sensitive to noise data.Next,a new method of calculating affiliation degree is proposed to find the subspace where the cluster is located quickly and accurately.Then,adaptive fireworks algorithm is introduced in the clustering process to effectively balance the local and global search,overcoming the disadvantage of falling into local optimum in the existing algorithms.Comparing with EWKM,FWKM,FSC and LAC algorithms,experiments are conducted on UCI datasets,synthetic images,Berkeley image datasets,as well as clinical breast MR images and brain MR images.The results demonstrate that the proposed algorithm not only can get better results on UCI datasets,but also has better anti-noise performance.Especially for MR images,high clustering precision and robustness can be obtained,and effective MR images segmentation can be achieved.
作者 范虹 侯存存 朱艳春 姚若侠 FAN Hong;HOU Cun-Cun;ZHU Yan-Chun;RAO Ruo-Xia(School of Computer Science, Shaanxi Normal University, Xi'an 710062, China;Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen 518055, China)
出处 《软件学报》 EI CSCD 北大核心 2017年第11期3080-3093,共14页 Journal of Software
基金 国家自然科学基金(11471004) 陕西省自然科学基金(2014JM2-6115) 陕西省科学技术研究发展计划(2012K06-36)~~
关键词 烟花算法 软子空间聚类 噪声聚类 MR图像 图像分割 fireworks algorithm soft subspace clustering noise clustering MR image image segmentation
  • 相关文献

参考文献3

二级参考文献30

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2Kriegel H-P, Kroger P, Zimek A. Clustering high dimen sional data: A survey on subspace clustering, pattern based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 2009, 3(1): 1-58.
  • 3Moise G, Zimek A, Kroger P, Kriegel H-P, Sander J. Sub- space and projected clustering: Experimental evaluation and analysis. Knowledge and Information Systems, 2009, 21(3) : 299-326.
  • 4Huang J Z, Ng M K, Rong H, Li Z. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5):657-668.
  • 5Jing L, Ng M K, Huang J Z. An entropy weighting k means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineer- ing, 2007, 19(8): 1026-1041.
  • 6Deng Z, Choi K-S, Chung F-L, Wang S. Enhanced soft sub- space clustering integrating within-cluster and between clus- ter information. Pattern Recognition, 2010, 43(3): 767-781.
  • 7Boongoen T, Shang C, Iam-On N, Shen Q. Extending data reliability measure to a filter approach for soft subspace clustering. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2011, 41(6): 1705-1714.
  • 8Gan G, Wu J, Yang Z. A fuzzy subspace algorithm for clus- tering high dimensional data//Li Xue, Osmar Zaiane, Li Z-H eds. Advanced Data Mining and Applications, Series Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2006, 4093 : 271-278.
  • 9Friedman J H, Meuiman J J. Clustering objects on subsets of attributes. Journal of the Royal Statistieal Society, 2004, 66:815-849.
  • 10Jing L, Ng M, Xu J, Huang J. Subspace clustering of text documents with feature weighting k means algorithm// Ho T, Cheung D, Liu H. Advances in Knowledge Discovery and Data Mining, Series. Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2005, 3518:802-812.

共引文献71

同被引文献80

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部