期刊文献+

陶瓷空气反应钎焊研究综述 被引量:10

Review of Research on Reactive Air Brazing Ceramics
下载PDF
导出
摘要 高温电化学装置技术优势明显,市场潜力巨大,其特殊的服役环境对钎焊接头提出了更高要求,空气反应钎焊连接方法应运而生。综述了目前常用于RAB连接的钎料种类和已成功实现RAB连接的陶瓷/金属体系,并对相关接头界面组织和综合性能进行了分析。迄今为止,Ag-Cu O钎料使用最广。利用空气反应钎焊方法能够成功实现氧化物、钙钛矿陶瓷自身及其与部分耐高温不锈钢的可靠连接,结合界面成形良好,接头性能稳定。常用于RAB连接的氧化物陶瓷以YSZ和Al_2O_3为代表,LSCF/BSCF/BCFN/BCFZ等典型钙钛矿陶瓷也可利用RAB进行连接。Crofer22 APU,AISI310S和AISI314等耐高温不锈钢与上述钙钛矿陶瓷进行RAB连接后,接头的力学性能、抗氧化能力和气密性均能满足使用需求。在此基础上,对空气反应钎焊的连接特性与研究现状进行了总结。最后,对其发展前景和未来研究方向进行了展望。 High-temperature electrochemical devices have great market potential due to their technological superiority. Reliable joints are required because of the harsh operational conditions. Based on this background, a kind of new bonding technology called reactive air brazing (RAB) was introduced. This article reviewed brazing fillers commonly used in RAB and ceramic/metal joining systems obtained by RAB. The interfacial microstructure and properties of relevant joints were analyzed. Currently, the most widely used brazing filler in/LAB is Ag-CuO. Oxides such as YSZ and A1203 and perovskite ceramics including LSCF, BSCF, BCFN and BCFZ could be successfully brazed with high-temperature stainless steel using this joining method and reliable joints can be achieved. Joints between perovskite ceramics and Crofer22 APU, AISI310S and AISI314 stainless steel could meet service demands on mechanical property, oxidation resistance and gas tightness. On this basis, this paper summarized joining characteristics and current research status of reactive air brazing. Finally, the development prospects and future research directions were presented.
出处 《精密成形工程》 2018年第1期1-9,共9页 Journal of Netshape Forming Engineering
基金 国家自然科学基金优秀青年科学基金(51622503)
关键词 空气反应钎焊 高温电化学陶瓷 耐高温不锈钢 界面组织 接头综合性能 reactive air brazing high-temperature electrochemical ceramics high-temperature stainless steel interfacial microstructure comprehensive properties of joints
  • 相关文献

参考文献1

二级参考文献15

  • 1Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S. Int J Hydrogen Energy, 2007, 32:3797.
  • 2Kothari R, Buddhi D, Sawhney R L. lnt J Global Energy Issues, 2004, 21:154.
  • 3Joseck F, Wang M, Wu Y. Int J Hydrogen Energy, 2008, 33: 1445.
  • 4Murray M L, Seymour E H, Rogut J, Zechowska S W. Int J Hydrogen Energy, 2008, 33:20.
  • 5Turpeinen E, Raudaskoski R, Pongrcz E, Keiski R L. Int J Hydrogen Energy, 2008, 33:6635.
  • 6Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y. Fuel, 2006, 85:143.
  • 7Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. J Membr Sci, 2000, 172:177.
  • 8Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Int J Hydrogen Energy, 2008, 33:3311.
  • 9Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Energy Fuels, 2009, 23:414.
  • 10Zhu X F, Cong Y, Yang W S. JMembr Sci, 2000, 283:38.

共引文献1

同被引文献92

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部