期刊文献+

原子力显微镜力谱研究大肠杆菌启动子与RNA聚合酶的相互作用 被引量:1

Atomic force microscope based force spectroscopy as tool to study the interaction between Escherichia coli promoter and RNA polymerase
原文传递
导出
摘要 【目的】本研究通过原子力显微镜(AFM)力谱技术研究了大肠杆菌启动子与RNA聚合酶(RNAp)间的相互作用,目的是建立一种高效的体外表征启动子的新方法。【方法】优化了用于单分子AFM力谱分析的蛋白固定化策略,建立AFM力谱分析启动子的策略,以缺失识别启动子序列的σ亚基核心RNA聚合酶(RNAp-C)为对照,研究启动子/RNAp间相互作用的特异性。最后比较了序列较典型的Ls1启动子和缺失–10区的Ls2启动子的力谱。【结果】基于建立的方法,验证了Ls1与大肠杆菌RNAp结合的特异性,其相互作用力为(331.10±5.10)p N。与Ls1相比,Ls2启动子与RNAp结合显著减少。利用启动子探针质粒,以报告基因cat的表达产物氯霉素乙酰转移酶(CAT)的酶活验证Ls1、Ls2启动子强度,分别为(181.70±4.10)、(0.30±0.20)U/mg。【结论】本研究建立的基于AFM力谱技术的启动子分析技术,是一种高效的、直接定量表征启动子活性的新方法。 [Objective] To establish an efficient method for promoter characterization, the interaction between E. coli promoter and RNA polymerase (RNAp) was studied by atomic force microscope (AFM) based force spectroscopy. [Methods] Protein immobilization was optimized, and the specific promoter/RNAp interaction was verified using core-RNAp (RNAp-C) as control. The force spectrum of promoter Ls2, lack of-10 region of Lsl, was studied. [Results] Based on the established method, the specific interaction between promoter Lsl and RNAp was studied, and the rupture force was measured as (3 31.10±5.14) pN. Ls2 showed significantly less binding events towards RNAp compared with Lsl. Using promoter-probe plasmid, the activities of Lsl and Ls2 were verified by reporter gene-cat, which were (181.73±4.08) U/rag and (0.33±0.21) U/mg, respectively. [Conclusion] A novel promoter analysis method based on AFM force spectroscopy was established. The results demonstrated this method can be applied in quantitative characterization of promoter with high efficacy and reliability.
出处 《微生物学报》 CAS CSCD 北大核心 2018年第1期109-121,共13页 Acta Microbiologica Sinica
基金 江苏自然科学基金(BK20150151) 国家自然科学基金(31630044)~~
关键词 作用力 大肠杆菌启动子 RNA聚合酶 AFM CAT酶活 rupture force, E. coli promoter, RNA polymerase, AFM, CAT enzyme activity
  • 相关文献

参考文献2

二级参考文献52

  • 1Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56(9): 930-3
  • 2Muller D J, Anderson K. Biomolecular imaging using atomic force microscopy. Trends Biotechnol, 2002, 20(8): S45-9
  • 3Horber JKH, Miles MJ. Scanning probe evolution in biology. Science, 2003, 302(5647): 1002-5
  • 4Lee GU, Kidwell DA, Colton RJ. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir, 1994, 10(2): 354-7
  • 5Willemsen OH, Snel MM, Cambi A, et al. Biomolecular interactions measured by atomic force microscopy. Biophys J, 2000, 79(6): 3267-81
  • 6Zlatanova J, Lindsay SM, Leuba SH. Single molecule force spectroscopy in biology using the atomic force microscope. Prog Biophys Mol Biol, 2000, 74(1-2):37-61
  • 7Hinterdorfer P, Dufrene YF. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods, 2006, 3(5): 347-55
  • 8Horton M, Charras G, Lehenkari P. Analysis of ligand-receptor interactions in cells by atomic force microscopy. J Recept Signal Transduct Res, 2002, 22(1-4): 169-90
  • 9Dufrene YF. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol, 2002, 184( 19): 5205-13
  • 10Stevens F, Lo YS, Harris JM, et al. Computer modeling of atomic force microscopy force measurements: Comparisons of poisson, histogram, and continuum methods. Langmuir, 1999, 15(1): 207-13

共引文献11

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部