期刊文献+

基于自适应邻域选择的局部线性嵌入算法 被引量:1

Locally linear embedding algorithm based on adaptive neighborhood selection
下载PDF
导出
摘要 为了提高高维数据维数约简的计算效率,基于局部邻域相关的权重与稀疏矩阵,提出了1种改进的局部线性嵌入算法。对于高维数据维数约简的信息量估计,采用了相关维数估计方法来计算一致流形信息量的上界。采用Swiss、Broken swiss、Helix、Twinpeaks和Intersect 5种经典数据集进行实验评估。实验结果显示,与局部线性嵌入算法相比,针对5种经典数据集,该文算法速度分别提高了27.60%、27.51%、27.18%、28.31%和45.28%。 An improved locally linear embedding(LLE) algorithm based on local neighborhood-dependent weights and sparse matrices is proposed to improve the computation efficiency of dimensionality reduction for high-dimensional data.The correlation dimension estimation method is used to estimate the intrinsic information of the dimensionality reduction in high-dimensional data and the upper bound of the uniform manifold. Five classical datasets,including Swiss,Broken swiss,Helix,Twinpeaks and Intersect,are used to assess the algorithm. The results show that,compared with that of local linear embedding algorithm,the calculation speed of this algorithm on the five datasets is improved by 27.60%,27.51%,27.18%,28.31% and 45.28% respectively.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第6期748-752,共5页 Journal of Nanjing University of Science and Technology
基金 江苏省高等学校自然科学研究项目(17KJB470002)
关键词 自适应邻域选择 局部线性嵌入 稀疏矩阵 数据降维 流形算法 adaptive neighborhood selection locally linear embedding sparse matrices dimension reduction manifold algorithm
  • 相关文献

参考文献6

二级参考文献51

  • 1林大超,安凤平,郭章林,张立宁.滑坡位移的多模态支持向量机模型预测[J].岩土力学,2011,32(S1):451-458. 被引量:31
  • 2刘新喜,夏元友,张显书,郭瑞清.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444. 被引量:163
  • 3Seung H, Lee D. The manifold ways of perception [J]. Science, 2000, 290(5500) : 2268 - 2269.
  • 4Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 - 2326.
  • 5Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319- 2323.
  • 6Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373- 1396.
  • 7He X, Niyogi P. Locality preserving projections [C] // Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 153- 160.
  • 8Chang Y, Hu C, Turk M. Manifold of facial expression [C] // Proc IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003:28 - 35.
  • 9Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding [C]// NIPS, Vancouver, British Columbia, Canada, 2001 : 1255 - 1262.
  • 10Kanade T, Cohn J, Tian Y. Comprehensive database for facial expression analysis [C] // IEEE Proc the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2000:46 - 53.

共引文献121

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部