期刊文献+

基于细菌觅食算法求解折扣{0-1}背包问题的研究 被引量:8

Research on bacterial foraging optimization algorithm for discounted {0-1} knapsack problem
下载PDF
导出
摘要 折扣{0-1}背包问题(D{0-1}KP)是新型的0-1背包问题。提出了基于细菌觅食算法(BFO)求解D{0-1}KP的方法,首先描述了D{0-1}KP的两个数学模型,然后将BFO分别与两个数学模型相结合,即细菌个体分别采用二进制向量和四进制向量的编码方法,并利用贪心策略优化初始解和修复非正常编码个体,给出了求解D{0-1}KP的FirBFO和SecBFO算法。对四类实例的计算结果表明,FirBFO和SecBFO都非常适于求解大规模的D{0-1}KP实例,能得到最优解或近似比接近1的近似解。 The Discounted{0-1}Knapsack Problem(D{0-1}KP)is an extension of the classical 0-1 Knapsack Problem(0-1 KP).In this paper,it uses Bacterial Foraging Optimization algorithm(BFO)to solve D{0-1}KP,Firstly,the two mathematical models of the D{0-1}KP are described,and then BFO is combined with the two mathematical models,the bacterial individual uses the binary vector and the four binary vector coding method,and the greedy strategy is used to optimize the initial solution and repair the non normal coding individuals,Fir BFO and Sec BFO algorithms for solving D{0-1}KP are given.The calculations of four instances show that,Fir BFO and Sec BFO are suitable for solving large scale hard D{0-1}KP.And they can also obtain the approximate solution whose approximation rate is almost equal to 1.
作者 刘雪静 贺毅朝 吴聪聪 才秀凤 LIU Xuejing;HE Yichao;WU Congcong;CAI Xiufeng(College of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第2期155-162,共8页 Computer Engineering and Applications
基金 河北省高等学校科学研究计划项目(No.ZD2016005) 河北省自然科学基金(No.F2016403055)
关键词 折扣{0-1}背包问题 细菌觅食算法 贪心策略 修复与优化 discounted{0-1}knapsack problem bacterial foraging optimization algorithm greedy strategy repair and optimization
  • 相关文献

参考文献3

二级参考文献25

  • 1陶泽,谢里阳,郝长中,梁迪.基于混合遗传算法的车间调度问题的研究[J].计算机工程与应用,2005,41(18):19-22. 被引量:11
  • 2朱红霞,沈炯,丁轲轲.单元机组负荷非线性预测控制及其仿真研究[J].中国电机工程学报,2006,26(23):72-77. 被引量:12
  • 3丁书斌,李启堂,徐继涛,王敏.混合遗传算法求解经典作业车间调度问题[J].煤矿机械,2007,28(1):22-24. 被引量:6
  • 4Wang Xuesong, Cheng Yuhu, Sun Wei. Multi-step predictive control with TDBP method for pneumatic position servo system [ J]. Transactions of the Institute of Measurement and Control, 2006,28(1) :53 - 68.
  • 5Yuzgec U, Y. Becerikli, M. Turker. Nonlinear predictive control of a drying process using genetic algorithms[ J]. ISA Transactions,2006,45(4) :589 - 602.
  • 6Song Ying, Chen Zengqiang, Yuan Zhuzhi. New chaotic PSO- based neural network predictive control for nonlinear process [ J]. IEEE. Transactions on Neural Networks, 2007,18 (2) : 595 -600.
  • 7Sandou G, Olaru S. Ant colony and genetic algorithm for constrained predictive control of power systems[J]. Lecture Notes in Computer Science,2007:4416:501 - 514.
  • 8Passino K M. Biomimicry of bacterial foraging for distributed oplimizafion and control[ J]. IEEE, Control Systems Magazine, 2002,22(3) :52 - 67.
  • 9Tsutsui S,Pelikan M, Goldberg D E. Probabilistic model-building genetic algorithms using marginal histograms in continuous domain[ A ]. Proceedings of the International Conference on Knowledge Based Intelligent Information Engineering Systems and Allied Technology [ C ]. Amsterdam, Netherlands: IOS Press,2001.112 - 121.
  • 10Kennedy J, Eberhart R C. Swarm intelligence [ M ]. Morgan, Kaufmann Publishers, 2001.

共引文献103

同被引文献35

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部