期刊文献+

时间序列数据趋势转折点提取算法 被引量:9

Trend Turning Point Extraction Algorithm for Time Series Data
下载PDF
导出
摘要 时间序列数据蕴含趋势信息,可以根据数据的趋势信息提取趋势转折点,达到压缩数据、减少噪声影响的目的。通过分析时间序列数据的趋势信息,提出自适应数据趋势转折点提取算法。该算法不依赖任何先验知识,根据数据本身的趋势特征自动提取趋势转折点,提取信息包括坐标索引和对应数据。UCR时间序列分类数据集与SEEP、CAP和PAA等算法进行对比的实验结果表明,在多种数据情况下,该算法拟合误差和分类错误率更小,平均拟合误差为0.373 6,分类错误率同原始数据的分类错误率相比减少3.39%。 The time series data contains trend information, which can extract the trend turning point according to the trend information of the data, and can achieve the purpose of compressing the data and reducing the influence of noise. By analyzing the trend information of time series data, an adaptive data trend turning point extraction algorithm is proposed. The algorithm does not rely on any prior knowledge, only according to the trend characteristics of the data itself automatically extract the trend turning point, extracted information including the coordinate index and the corresponding data. Compared with SEEP, CAP and PAA algorithm, experimental results show that the fitting error and classification error rate of the algorithm are smaller in the case of multiple data, and the average fitting error is 0. 373 6, the classification error rate compared with the original data classification error rate decreases by 3.39% .
出处 《计算机工程》 CAS CSCD 北大核心 2018年第1期56-61,68,共7页 Computer Engineering
基金 国家重点研发计划项目(2016YFC0802107)
关键词 时间序列 趋势转折点 UCR时间序列分类数据集 分段线性表示 拟合误差 time series trend turning point UCR time series classification dataset Piecewise Linear Representation(PLR) fitting error
  • 相关文献

参考文献5

二级参考文献20

  • 1Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 2龚薇,肖辉,曾海泉.基于变化点的时间序列近似表示[J].计算机工程与应用,2006,42(10):169-171. 被引量:6
  • 3詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 4潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 5Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[J]. Journal of Knowledge and Information Systems, 2001, 3(3): 263-286.
  • 6Qu Yunyao, Wang Changzhou. Supporting Fast Search in Time Series for Movement Patterns in Multiples Scales[C]//Proc. of the 7th ACM CIKM Int'l Conference on Information and Knowledge Management. Bethesda, USA: [s. n.], 1998.
  • 7Keogh E, Pazzani M. An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback[C]//Proc. of the 4th Int'l Conference on Knowledge Discovery and Data Mining. New York, USA: [s. n.], 1998.
  • 8Park S, Lee D. Fast Retrieval of Similar Subsequences in Long Sequence Databases[C]//Proc. of the 3rd IEEE Knowledge and Data Engineering Exchange Workshop. Chicago, USA: [s. n.], 1999.
  • 9Perng C S, Wang Haixun. Landmarks: A New Model for Similarity-based Pattern in Time Series Databases[C]//Proc. of the 16th IEEE Int'l Conf. on Data Engineering. California, USA: [s. n.], 2000.
  • 10Pratt K B, Eugene F. Search for Patterns in Compressed Time Series[J]. International Journal of Image and Graphics, 2002, 2(1): 89-106.

共引文献95

同被引文献82

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部