期刊文献+

一种面向动态网络的社团检测与演化分析方法 被引量:1

New Community Detection and Evolution Analysis Method for Dynamic Networks
下载PDF
导出
摘要 针对制约动态网络演化分析方法发展的社团演变模式挖掘问题,设计了基于指向性变异策略和变邻域搜索算法的静态社团检测算法与基于匹配度和社团生存周期的社团演化分析算法,并采用在时刻上运行静态社团检测算法、在时序上运行社团演化分析算法的策略,提出了一种面向动态网络的社团检测与演化分析方法。并用Zachary空手道俱乐部网络和Power网络验证了该方法的可行性和有效性。 Aiming at the mining problem for evolutionary community patterns, which restricts the development of evolution analysis methods for dynamic network, this paper designs a static community detection algorithm based on a kind of directed mutation strategy and variable neighborhood search algorithm, and a community evolution analysis algorithm based on compatibility and community lifetime. Through adopting a strategy that runs static community detection algorithm on the moment and community evolution analysis algorithm on the sequential, a new community detection and evolution analysis method for dynamic network is proposed. In the experiment, the feasibility and effectiveness of the proposed method are verified by Zachary karate club network and power network.
作者 王菊 刘付显
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第1期117-124,共8页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(71771216)
关键词 社团检测 社团生存周期 动态网络 演化分析 community detection community lifetime dynamic network evolution analysis
  • 相关文献

参考文献5

二级参考文献72

  • 1杨博,刘大有.Force-Based Incremental Algorithm for Mining Community Structure in Dynamic Network[J].Journal of Computer Science & Technology,2006,21(3):393-400. 被引量:8
  • 2WArI3"S D J, STROGATZ S H. Collective dynamics of "small- world" networks [ J ]. Nature, 1998,393 (84) : 440-442.
  • 3GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [ J]. Proceedings of the National A- cademy of Sciences of the United States of America, 2002,99 (12) :7821-7826.
  • 4NEWMAN M E J, GIRVAN M. Finding and evaluating com- munity structure in networks [ J ]. Physical Review E, 2004, 69(2) :026113.
  • 5PALLA G, DERENYI T, FARKAS T, et al. Uncovering the o- verlapping community structure of complex networks in nature and society [ J ]. Nature, 2005,435 (7043) : 814-818.
  • 6AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal muhiscale complexity in networks [ J ]. Nature, 2010, 466 ( 7307 ) : 761-764.
  • 7NEWMAN M E J. Fast algorithm for detecting community structure in networks [ J ]. Physical Review E, 2004,69 (6) : 066133.
  • 8BLONDEL V D, GUILLAUME J L, LAMBIOTYE R, et al. Fast unfolding of communities in large networks [ J ]. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10) : 10008.
  • 9LANCICHINETYI A, FORTUNATO S, KERTESZ J.Detecting the overlapping and hierarchical community structure of com- plex networks [ J ]. New Journal of Physics, 2009, 11: 033015.
  • 10TASGIN M, HERDAGDELEN A, BINGOL H. Community detection in complex networks using genetic algorithms [ EB/ OL]. (2012-12-15) .http ://arxiv.org/abs 0711.0491vl.

共引文献61

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部