摘要
研究一类比率依赖Holling-Leslie捕食-食饵模型。利用谱分析方法讨论了局部系统正常数平衡态的稳定性,进而说明周期轨道的存在性。利用同样方法讨论反应扩散系统正常数平衡态的Turing不稳定性,并通过上下解方法证明其全局稳定性。
A class of ratio dependent Holling-Leslie type predator-prey model was studied in the paper. The stability of positive equilibrium for the local system is discussed by the method of spectral analysis. Meanwhile, the existence of periodic orbits is shown. Secondly, the Turing instability of the positive equilibrium for the reaction-diffusion system is also discussed by the same way, and then by the upper and lower solution method, the global stability is obtained.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期20-24,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
陕西省教育厅专项科研计划(16JK1710
16JK1708
16JK1694)