期刊文献+

比率型Holling-Leslie捕食模型的稳定性分析 被引量:1

Analysis on stability of a ratio-dependent Holling-Leslie type predator-prey model
下载PDF
导出
摘要 研究一类比率依赖Holling-Leslie捕食-食饵模型。利用谱分析方法讨论了局部系统正常数平衡态的稳定性,进而说明周期轨道的存在性。利用同样方法讨论反应扩散系统正常数平衡态的Turing不稳定性,并通过上下解方法证明其全局稳定性。 A class of ratio dependent Holling-Leslie type predator-prey model was studied in the paper. The stability of positive equilibrium for the local system is discussed by the method of spectral analysis. Meanwhile, the existence of periodic orbits is shown. Secondly, the Turing instability of the positive equilibrium for the reaction-diffusion system is also discussed by the same way, and then by the upper and lower solution method, the global stability is obtained.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期20-24,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省教育厅专项科研计划(16JK1710 16JK1708 16JK1694)
关键词 Holling-Leslie捕食模型 反应扩散系统 稳定性 Holling-Leslie predator-prey model reaction-diffusion system stability
  • 相关文献

参考文献3

二级参考文献19

  • 1Leslie P H.Some further notes on the use of matrices in population mathematics[J].Biometrika, 1948, 35 (3/4) : 213-245.
  • 2Leslie P H.A stochastic model for studying the properties of certain biological systems by numerical methods [J].Biometrika, 1958,5 (1/2) : 16-31.
  • 3Li Y L, Xiao D M.Bifurcations of a predator-prey system of Holling and Leslie types[J].Chaos, Solitons and Fractals, 2007,34 (2) : 606-620.
  • 4Wang Q,Fan M,Wang K.Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functional responses[J].J Math Anal Appl,2003,278 (2) :443-471.
  • 5Lou Y,Ni W M.Diffusion vs cross-diffusion:an elliptic approach[J].J Differential Equations, 1999,154( 1 ) : 157-190.
  • 6Smoller J.Shock waves and reaction-diffusion equations[M]. New York:Springer-Verlag, 1983.
  • 7Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis: Theory, Methods & Applications, 2000,39 (77) : 817-835.
  • 8Ye Q X, Li Z Y.Introduction to reaction-diffusion equations[M].Beijing: Science Press, ! 994 : 262-283.
  • 9Jaeduck J, Ni W M, Tang M X.Global bifurcation and structure of turning patterns in the 1-D Lengyel-Epstein model[J].J Dynam Differential Equations, 2004, 16 (2) : 297-320.
  • 10DeAngelis DL,Goldstein RA,O’Neill RV.A model for trophic interaction. Ecology . 1975

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部