期刊文献+

基于图像识别技术的隧道衬砌裂缝检测系统研究 被引量:30

Research on Crack Detection System of Tunnel Lining Based on Image Recognition Technology
下载PDF
导出
摘要 首先分析了既有隧道衬砌裂缝检测系统存在的问题,然后应用最新技术发展成果,提出基于图像识别技术的隧道衬砌裂缝检测系统。该系统能对隧道衬砌图像予以高速采集和存储,其后端采用基于深度学习的裂缝识别算法对海量的隧道衬砌图像数据进行快速识别,并提取裂缝特征参数。将该系统安装在现有轨道车上进行了试验,结果表明该系统可以50 km/h的速度对1 mm以上衬砌裂缝无遗漏采集。 Firstly,the existing problems of tunnel lining crack detection system were analyzed.Secondly,the tunnel lining crack detection system based on image recognition technology was put forward by using the latest technology development results,which could collect and store the tunnel lining image at high speed. The back end of system adopted the crack recognition algorithm based on deep learning to quickly recognize the mass of tunnel lining image data and extract the characteristic parameters of the cracks.The system was installed on the existing rail vehicle and tested.The results show that the system can collect more than 1 mm lining cracks at 50 km/h speed.
出处 《铁道建筑》 北大核心 2018年第1期20-24,共5页 Railway Engineering
基金 中国铁路总公司科技研究开发计划(2016G006-B) 中国铁道科学研究院基金(2016YJ029)
关键词 铁路隧道 裂缝识别 试验研究 图像识别技术 深度学习 Railway tunnel Crack recognition Experimental research Image recognition technology Deep learning
  • 相关文献

参考文献3

二级参考文献71

  • 1刘清元,谈桥.基于图像处理的混凝土裂缝的检测[J].武汉理工大学学报,2005,27(4):69-71. 被引量:15
  • 2肖旺新,张雪,黄卫,严新平.路面破损自动识别的一种新算法[J].公路交通科技,2005,22(11):75-78. 被引量:12
  • 3Lee S Y, Lee S H, Lee S Y, et al. development of an inspection system for crack in a concrete tunnel lining [ J ]. Canadian Journal of Civil Engineering, 2007, (8) :966 -975.
  • 4胡小峰,赵辉.VisualC^++/MATLAB图像处理与识别实用案例精选[M].北京:人民邮电出版社,2004.9.
  • 5Ghosal S,Mehrotra R. Orthogonal moment operators for subpixel edge detection[J].Pattern Recognition,1993,(02):295.
  • 6冈萨雷斯.数字图像处理[M]北京:电子工业出版社,2003.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 8Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 9Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 10Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.

共引文献624

同被引文献247

引证文献30

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部