期刊文献+

理想格下强安全认证密钥交换协议的分析与设计 被引量:1

Strongly secure authenticated key exchange from ideal lattices
下载PDF
导出
摘要 理想格下认证密钥交换协议,如基于密钥封装机制,基于环上带误差学习或数论研究单元等理想格难题的协议,存在构造不合理、证明紧致性低以及实现效率低等问题。可考虑采用隐式认证协议设计方法、抵御小域攻击算法技巧以及高效调和技术等对其加以改进。构造强安全模型与量子随机预言机对指导协议设计十分重要。 Authentication key exchange protocols from ideal lattices, which based on keyencapsulation mechanism,and directly based on some problems such as ring learning with errors or number theory research unit, have shortcomings that their construction is not reasonable, security proof is not tightly and implementation is inefficiency. These protocols may be improved by using implicit authentication protocol design methods,techniques to resist small field attacks and efficient conciliating technique. To construct a strong security model and a quantum random oracle machine s very important for the design of these protocols.
作者 李灏 王立斌 LIHao;WANG Libin(School of Computer Science,South China Normal University,Guangzhou 510631, China)
出处 《西安邮电大学学报》 2017年第6期1-8,共8页 Journal of Xi’an University of Posts and Telecommunications
基金 广东省自然科学基金资助项目(2015A030313379)
关键词 认证密钥交换 里想格 强安全模型 量子攻击 authenticated key exchange,ideal lattices,strong security model,quantum attack
  • 相关文献

参考文献5

二级参考文献96

  • 1ZHENG Dong,LI Xiangxue,CHEN Kefei.LFSR-based Ring Signature Scheme[J].Chinese Journal of Electronics,2007,16(3):397-400. 被引量:3
  • 2Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 3Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 4Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 5Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 6Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 7Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 8Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 9I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 10Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)

共引文献115

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部