期刊文献+

基于马氏距离的近邻传播聚类算法 被引量:2

Affinity propagation clustering based on Mahalanobis distance
下载PDF
导出
摘要 为改善近邻传播聚类算法对高维数据的聚类效果,引入马氏距离替换原算法中的欧氏距离,并借助正则化总散度矩阵的奇异值分解实现数据变换预处理,进而在在降维后的变换子空间中对数据集进行聚类。针对Iris、User、Soybean和Vehicle四个数据集,选取适当正则化参数,经仿真实验可见,改进算法的聚类精度在整体上有所提高。 In order to improve the affinity propagation clustering algorithm for high dimensional data clustering effect,the Mahalanobis distance is introduced to replace the original Euclidean distance,a data transformation preprocessing is carried out by means of singular value decomposition of the regularized total scatter matrix,then,the data sets are clustered in the transformed subspace after dimension reduction.For the four data sets of Iris,User,Soybean and Vehicle,the appropriate regularization parameters are selected,and the simulation results show that the clustering accuracy of the improved algorithm is improved on the whole.
出处 《西安邮电大学学报》 2017年第6期46-49,共4页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61671377) 陕西省自然科学基金资助项目(2014JM8307)
关键词 近邻传播聚类 高维数据 马氐距离 正则化 affinity propagation clustering high dimensional data Mahalanobis distance regularization
  • 相关文献

参考文献6

二级参考文献102

  • 1刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 2Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York, Plenum Press, 1981: 95-107.
  • 3Yang Miin-Shen and Wu Kuo-Lung, et al.. Alpha-cut implemented fuzzy clustering algorithms and switching regressions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2008, 38(3): 588-603.
  • 4Cai Wei-ling, Chen Song-can, and Zhang Dao-qiang. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838.
  • 5Xing Hong-jie and Hu Bao-gang. An adaptive fuzzy c-means clustering-based mixtures of experts model for unlabeled data classification [J]. Neurocomputing, 2008, 71(4): 1008-1021.
  • 6Wu Kuo-lung, Yu Jian, and Yang Miin-Shen. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality test [J]. Pattern Recognition Letters, 2005, 26(5): 639-652.
  • 7Yoshiki Fukuyama and Michio Sugeno. A new method of choosing the number of clusters for the fuzzy c-means method [C]. Proceedings of the 5th Fuzzy System Symposium, in Japanese, 1989: 247-250.
  • 8Clausi David. K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied image texture segmentation [J]. Pattern Recognition, 2002, 35(9): 1959-1972.
  • 9Blake C L and Merz C J. UCI repository of machine learning databases, Irvine. CA: University of California, Department of Information and Computer Science, http://www.ics.uci. edu/-mlearn/MLRepository.html, 1998, 7.
  • 10张道强 陈松灿.高维数据降维方法.中国计算机学会通讯,2009,5(8):15-22.

共引文献211

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部