期刊文献+

Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics 被引量:1

Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics
原文传递
导出
摘要 A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge^diseharge model is available, The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (WceH_m^x), with the adjusted regression coefficient R2 of ap- proximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (Zini), with the coeffi- cients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-oewm and below the upper edge of the granpel re- gion, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relation- ship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without char- ging/discharging schemes are available. The results can also help understand the environmental conditions at light- ning initiation sites. A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge^diseharge model is available, The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (WceH_m^x), with the adjusted regression coefficient R2 of ap- proximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (Zini), with the coeffi- cients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-oewm and below the upper edge of the granpel re- gion, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relation- ship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without char- ging/discharging schemes are available. The results can also help understand the environmental conditions at light- ning initiation sites.
出处 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期976-986,共11页 气象学报(英文版)
基金 Supported by the National Natural Science Foundation of China(41675001 and 41405004) National(Key)Basic Research and Development(973)Program of China(2014CB441406) Basic Research Funds of Chinese Academy of Meteorological Sciences(2016Z002 and 2017Z003)
关键词 lightning initiation GRAUPEL ice crystal vertical air motion cloud microphysics lightning initiation, graupel, ice crystal, vertical air motion, cloud microphysics
  • 相关文献

参考文献3

二级参考文献49

共引文献28

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部