期刊文献+

杨楼油田杨浅19断块的岩性测井识别模型研究

Lithologic Logging Identification Model of Yanglian 19 Fault Block in Yanglou Oilfield
下载PDF
导出
摘要 杨楼油田杨浅19断块常规测井曲线在对岩性进行识别时,各类测井曲线对岩性识别都有一定影响,采用简单的反映线性关系的交会图和直方图难以达到岩性定量精细识别的目的。通过对杨浅19断块岩性识别模型的研究,确立了人工神经网络的岩性识别模型,提高了该区的岩性辨识能力,使识别结果更加准确、可信。 The conventional logging curves of Yangliao 19 fault block in Yanglou Oilfield have various influences on lithology identification when identifying lithology.It is difficult to achieve the lithologic identification by simple logarithmic and histogram reflecting the linear relationship The purpose of quantitative identification of lithology.In this paper, the lithology identification model of Yang-19 fault block is studied, and the lithology identification model of artificial neural network is established to improve the lithology identification ability of the area, making the recognition result more accurate and credible.
作者 袁常立
出处 《化工设计通讯》 CAS 2018年第1期222-222,共1页 Chemical Engineering Design Communications
关键词 岩性 测井曲线 岩性识别 模型 lithology logging curve lithology identification model
  • 相关文献

参考文献1

二级参考文献8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部