摘要
基于东营、济南、蓬莱三个观测站边界层风廓线雷达观测的各高度层和地面气象站10 m高度的最大风速数据,采用统计、极值分布、最小二乘法、廓线图等方法,进行风速随高度变化研究。结果表明:三站10~3 000 m各高度层2014年全年的小时最大风速分别为30.6、30.7、31.2 m/s,出现高度分别为1 900、1 420、1 780 m,三站10~100 m高度层风速迅速增大而其上则随高度增加总体呈缓慢增大;三站2014年最大风速风剖面指数α,280 m高度层分别为0.222 1、0.243 8、0.184 5,460 m高度层分别为0.204 4、0.190 5、0.191 5,700 m高度层分别为0.188 7、0.167 8、0.167 1;460 m高度层以下各拟合α值总体与GB 50009—2012《建筑结构荷载规范》中的C类地表粗糙度的接近,但蓬莱站高度280 m以下的更接近B^C类中值;700 m高度层拟合α值总体与GB 50009—2012中的B类地表粗糙度的接近,但东营站的更接近B^C类中值。分析认为:三个观测站不同下垫面粗糙度对α的影响显著,GB 50009—2012中的风剖面模型在高度300 m以下未能与实测风速廓线吻合,100~300 m高度层实测最大风速远大于拟合值,进而探讨指出GB 50009—2012中的拟合指数方法所推荐的统一值存在不足或局限性。在高层构筑物设计时,应确保截断高度层的实际最大风速摆脱地表粗糙度等人为因素影响。
Based on the maximum wind speed data at 10 m height and those measured by boundary wind profile radars in Jinan,Dongying,and Penglai,the paper discusses the change of the maximum wind speed with height using different methods,such as statistics,extreme value distribution,least square regression method and contour. It was shown that the 2014 annual maximum wind speed at the heights from 10 m to 3 000 m in the three stations were 30. 6,30. 7,31. 2 m/s respectively,and the corresponding heights are 1 900,1 420,1 780 m. Over the range of 10 to 100 meters high,the wind speed increases rapidly,and above this range the wind speed increases slowly with height. In the three stations,the annual maximum wind speed profile indices α in 2014 were,respectively,0. 222 1,0. 243 8 and0. 184 5 at the height of 280 m,0. 204 4,0. 190 5 and 0. 191 at the height of 460 m,and 0. 1887,0. 167 8 and0. 167 1 at the height of 700 m. Below the height of 460 m,α was generally consistent with the value for the surface roughness of class C stipulated in the GB 50009—2012 ‘Building structure load specifications'. However,in Penglai station,below the height of 280 m,α was closer to the value corresponding to classes B-C. At the height of 700 m,αwas generally close to design value for the surface roughness of class B,while in Dongying α was closer to the value for classes B-C. In conclusion,the influence of the roughness on the wind speed profile indices was significant. The wind profile model in GB 50009—2012 had unsatisfactory agreement with the measured wind speed profile below 300 m,and over the range of 100-300 m,the measured maximum wind speed was much larger than the fitted value. It was revealed that the recommended value based on the fitting index method given in GB 50009—2012 may have some deficiencies and limitations. In the design of high-rise structures,it is necessary to ensure that the maximum wind speed obtained from the actual observation at required heights is not affected by some factors such as surface roughness.
作者
王栋成
董旭光
邱粲
曹洁
WANG Dongcheng;DONG Xuguang;QIU Can;CAO Jie(Shandong Climate Center, Jinan 250031, China)
出处
《建筑结构学报》
EI
CAS
CSCD
北大核心
2018年第2期130-137,共8页
Journal of Building Structures
基金
山东省气象局气象科学技术研究项目重点课题(2014sdqxz05)
关键词
边界层风廓线雷达
现场实测
最大风速
风剖面指数
地表粗糙度
梯度风高度
截断高度
boundary wind profile radar
field measurement
maximum wind speed
wind profile index
surfaceroughness
gradient wind height
truncation height